|本期目录/Table of Contents|

[1]徐 宁 赵宏林 周学军 王莹莹 郭 鑫 李 楠.不同浮力下水下悬浮丛式管汇水动力分析[J].中国海上油气,2020,32(02):156-162.[doi:10.11935/j.issn.1673-1506.2020.02.019]
 XU Ning ZHAO Honglin ZHOU Xuejun WANG Yingying GUO Xin LI Nan.Hydrodynamic analysis of underwater suspension cluster manifold under different buoyancy[J].China Offshore Oil and Gas,2020,32(02):156-162.[doi:10.11935/j.issn.1673-1506.2020.02.019]
点击复制

不同浮力下水下悬浮丛式管汇水动力分析()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第32卷
期数:
2020年02期
页码:
156-162
栏目:
海洋工程
出版日期:
2020-03-25

文章信息/Info

Title:
Hydrodynamic analysis of underwater suspension cluster manifold under different buoyancy
文章编号:
1673-1506(2020)02-0156-07
作者:
徐 宁1 赵宏林1 周学军2 王莹莹3 郭 鑫3 李 楠3
(1. 中国石油大学(北京)机械与储运工程学院 北京 102249; 2. 中海油研究总院有限责任公司 北京 100028; 3. 中国石油大学(北京)安全与海洋工程研究院 北京 102249)
Author(s):
XU Ning1 ZHAO Honglin1 ZHOU Xuejun2 WANG Yingying3 GUO Xin3 LI Nan3
(1. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249,China; 2. CNOOC Research Institute Co., Ltd., Beijing 100028, China; 3. College of Safety and Ocean Engineering, China University of Petroleum, Beiji
关键词:
水下悬浮丛式管汇 水动力分析 油气密度 柔性立管 悬浮范围 稳定系泊
Keywords:
underwater suspension cluster manifold hydrodynamic analysis oil and gas densities flexible riser suspension range stable mooring
分类号:
TE243
DOI:
10.11935/j.issn.1673-1506.2020.02.019
文献标志码:
A
摘要:
本文利用OracleFlex软件建立了水下悬浮丛式管汇概念模型,分析了升沉运动下的悬链线参数特性,选择不同参数关系进行模拟,并根据不同油气密度和悬浮范围计算了管汇中浮筒质量的许用范围。基于Morison公式和凝集质量法,得到了浮筒质量许用范围内极端油气密度下管汇悬浮高度、偏移量、偏转角度和柔性立管最大拉力与最小弯曲半径的变化规律。根据悬链线参数关系优选外输管线悬跨长度,调节浮筒质量差使管汇平衡,得到了管汇稳定性主要参数在海流和极端油气密度下的变化规律。结果表明,通过优选外输管线悬跨长度与调节浮筒质量差,可使管汇满足稳定系泊的要求,从而实现水下悬浮丛式管汇的全空间布局。
Abstract:
In this paper, a conceptual model of underwater suspension cluster manifold is established by using Oracle Flex software, the characteristics of catenary parameters under heave motion are analyzed, and the analog calculations are carried out by selecting various parameter relationships, hence obtaining the allowable scope of manifold pontoon mass according to different hydrocarbon densities and suspension ranges. Based on the Morison formula and the agglomeration mass method, the variation rules of the manifold suspension height, offset, deflection angle, and the maximum tensile force and minimum bending radius of flexible risers under extreme oil and gas densities within the allowable mass of the buoy are obtained. The cantilever span of the external transmission pipeline is optimized according to the parameters relationship of the catenary, and the buoy mass is adjusted properly to balance the manifold, hence obtaining the change laws of the main manifold stability parameters under the ocean current and extreme oil and gas densities conditions. The results show that by optimizing the cantilever span length of external transmission pipeline and adjusting the buoy mass difference, the manifold can satisfy the requirements of stable mooring, thereby realizing the full space layout of the underwater suspension cluster manifold.

参考文献/References:

[1] WANG Y,DUAN M,FENG J,et al.Modeling for the optimization of layout scenarios of cluster manifolds with pipeline end manifolds[J].Applied Ocean Research,2014,46:94-103.
[2] MORAES C R O,ROSA M B,BRANCO C C M,et al.Lula NE pilot project an ultra deep success in the Brazilian pre-salt[R].27297-MS OTC,2016.
[3] DEVINE C A,HANEBERG W C,LEE H,et al.A sensible approach to subsea pipeline route determination:Moving from hand-drawn routes to geologically constrained,least cost optimized Paths[R].26940-MS OTC,2016.
[4] DEVINE C A,HANEBERG W C.Optimization methods for arctic pipeline route selection[R].OTC-27391-MS.
[5] HONG C,ESTEFEN S F,WANG Y,et al.An integrated optimization model for the layout design of a subsea production system[J].Applied Ocean Research,2018,77:1-13.
[6] MEISINGSET H,HOVE J,OLSEN G.Optimization of pipeline routes[C].Toulon:International Society of Offshore and Polar Engineers,2004.
[7] LUCENA R R,BAIOCO J S,DE LIMA B S L P,et al.Optimal design of submarine pipeline routes by genetic algorithm with different constraint handling techniques[J].Advances in Engineering Software,2014,76:110-124.
[8] HILL J,LAYCOCK S,CHAI S,et al.Hydrodynamic loads and response of a mid water arch structure[J].Ocean Engineering,2014,83:76-86.
[9] JI C,CHENG Y,YAN Q,et al.Fully coupled dynamic analysis of a FPSO and its MWA system with mooring lines and risers[J].Applied Ocean Research,2016,58:71-82.
[10] 袁洪涛,曾骥,莫建,等.极端海况下深水单点系泊系统FPSO运动响应分析[J].江苏科技大学学报(自然科学版),2015,29(2):108-113. YUAN Hongtao,ZENG Ji,MO Jian,et al.Single-point mooring FPSO responses analysis in extreme sea conditions[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2015,29(2):108-113.
[11] SANCHEZ M J,VÁZQUEZ H A O,CHO S K,et al.Yaw motion analysis of a FPSO turret mooring system under wave drift forces[J].Applied Ocean Research,2018,74:170-187.
[12] HAMIDREZA G,MORTEZA D.Parametric study of catenary mooring system on the dynamic response of the semi-submersible platform[J].Ocean Engineering,2018,153,319-332.
[13] 甄兴伟.新概念水中生产系统耦合运动及风险评估研究[D].大连:大连理工大学,2016. ZHEN Xingwei.Investigation on coupled motion and risk assessment of an innovative subsurface production system[D].Dalian:Dalian University of Technology,2016.
[14] HANONGE D,LUPPI A.Special session:Advances in flexible riser technology,challenges of flexible riser systems in shallow waters[C].Houston:Offshore Technology Conference,2010.

相似文献/References:

备注/Memo

备注/Memo:
*国家重点研发计划“基于深水功能舱的全智能新一代水下生产系统关键技术研究(编号:2016YFC0303701)”部分研究成果。 第一作者简介: 徐宁,男,在读硕士研究生,主要研究方向为海洋石油装备设计。地址:北京市昌平区府学路18号中国石油大学(北京)机械与储运工程学院(邮编:102249)。E-mail:xuning3321@163.com。 通信作者简介: 王莹莹,女,博士,副教授,主要研究方向为水下生产系统布局优化与故障诊断预警、水下安装与智能化等。E-mail:wyy@cup.edu.cn。收稿日期:2019-08-28 改回日期:2020-03-28 (编辑:韩丹岫)
更新日期/Last Update: 2020-03-30