|本期目录/Table of Contents|

[1]唐文献 赵 磊 李 华 陈 晨 王文涛 何佳伟.乙二醇再生与回收系统的预处理及脱水再生工艺参数优选[J].中国海上油气,2020,32(02):142-149.[doi:10.11935/j.issn.1673-1506.2020.02.017]
 TANG Wenxian ZHAO Lei LI Hua CHEN Chen WANG Wentao HE Jiawei.Pretreatment of glycol regeneration and recovery system as well as the parameters optimization of dehydration regeneration process[J].China Offshore Oil and Gas,2020,32(02):142-149.[doi:10.11935/j.issn.1673-1506.2020.02.017]
点击复制

乙二醇再生与回收系统的预处理及脱水再生工艺参数优选()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第32卷
期数:
2020年02期
页码:
142-149
栏目:
海洋工程
出版日期:
2020-03-25

文章信息/Info

Title:
Pretreatment of glycol regeneration and recovery system as well as the parameters optimization of dehydration regeneration process
文章编号:
1673-1506(2020)02-0142-08
作者:
唐文献1 赵 磊1 李 华2 陈 晨1 王文涛1 何佳伟1
(1. 江苏科技大学机械学院 江苏镇江 212000; 2. 重庆前卫科技集团有限公司 重庆 401121)
Author(s):
TANG Wenxian1 ZHAO Lei1 LI Hua2 CHEN Chen1 WANG Wentao1 HE Jiawei1
(1. College of Mechanical, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212000, China; 2. Chongqing Qianwei Technology Group Co., Ltd., Chongqing 401121, China)
关键词:
乙二醇再生与回收系统 预处理工艺 脱水再生工艺 关键参数优选
Keywords:
glycol regeneration and recovery system pretreatment process dehydration regeneration process key parameter optimization
分类号:
TE53
DOI:
10.11935/j.issn.1673-1506.2020.02.017
文献标志码:
A
摘要:
针对当前乙二醇再生与回收装置存在的效率低、能耗高的问题,研究了乙二醇再生与回收系统(MRU)的预处理工艺及脱水再生工艺,结合工艺模拟软件Aspen Plus的计算结果,对比优选了预处理工艺及脱水再生工艺的关键参数,结果表明:脱烃工艺最佳闪蒸温度为55 ℃,最佳闪蒸压力为0.13 MPa; 脱二价盐工艺中用于除二价阳离子的化学药剂NaOH和Na2CO3质量分数分别为60%和40%; 脱水再生工艺中再生塔最优参数依次为:进料温度75 ℃、塔压0.17 MPa、理论板数20、回流比0.21。通过对MRU系统的工艺参数优选,为MRU国产化研究奠定了基础。
Abstract:
Aiming at the problems of low efficiency and high energy consumption of the current ethylene glycol regeneration and recovery equipment, by studying the pretreatment and dehydration regeneration processes of the glycol regeneration and recovery system(MRU), the key parameters of the pretreatment and dehydration regeneration processes have been compared and optimized in combination with the calculation results of Aspen Plus process simulation software. The results show that the optimal flash temperature of the dehydrocarbonation process is 55 ℃ and the optimal flash pressure is 0.13 MPa; the mass fractions of divalent cation removers in the debivalent salt process(i.e., NaOH and Na2CO3)are 60% and 40%, respectively; the optimal parameters of the regeneration tower in the dehydration regeneration process are successively: the feed temperature of 75 ℃, tower pressure of 0.17 MPa, theoretical plate number of 20 and reflux ratio 0.21. By optimizing the process parameters of the MRU system, it laid a foundation for the localization research of MRU.

参考文献/References:

[1] KIM J,SHIN K,KIM J,et al.Kinetic hydrate inhibition performance of MEG in under-inhibition system:reduction opportunities of MEG injection for offshore gas field developments[R].24961-MS OTC,2014.
[2] BARAKA-LOKMANE S,HURTEVENT C,OHANESSIAN J L,et al.Prediction of mineral scaling in a MEG loop system of a gas production offshore[R].155124-MS SPE,2012.
[3] ZHOU Xiaohong,YI Hualei,HAO Yun.Process design consideration of large central platform for LW3-1 deepwater gas development[C].Proceedings of the Twenty-third International Offshore and Polar Engineering,Anchorage,Alaska,2013.
[4] 仝淑月,周树青,边江,等.天然气脱水技术节能优化研究进展[J].应用化工,2018,47(8):1732-1735. TONG Shuyue,ZHOU Shuqing,BIAN Jiang,et al.Research progress on energy saving optimization of natural gas dehydration technology[J].Applied Chemical Industry,2018,47(8):1732-1735.
[5] 周树青,仝淑月,高继峰,等.三甘醇脱水工艺参数与流程优化研究[J].当代化工,2018,47(10):2136-2139. ZHOU Shuqing,TONG Shuyue,GAO Jifeng,et al.Optimization research of parameters and flow of TEG dehydration process[J].Contemporary Chemical Industry,2018,47(10):2136-2139.
[6] BABU D R,HOSSEINZADEH M,EHSANINEJAD A,et al.Carbonates precipitation in MEG loops-a comparative study of South Pars and Bass Strait gas fifields[J].Journal Natural Gas Science Engineering,2015,27(2):955-966.
[7] LATTA T M,PALEJWALA A A,TIPSON S K,et al.Design considerations for mitigation the impact of contaminants in rich MEG on Monoethylene glycol recovery unit MRU performance[R].26456-MS OTC,2016.
[8] 郝蕴,周晓红.南海深水气田群番禺34-1CEP平台乙二醇再生脱盐系统工艺设计[J].中国海上油气,2014,26(4):91-95. HAO Yun,ZHOU Xiaohong.Process design of glycol regeneration reclamation unit for PY 34-1 CEP platform in deep water gas fields group of the South China Sea[J].China Offshore Oil and Gas,2014,26(4):91-95.
[9] DIBA K D,GUGLIELMINETTI M,SCHIAVO S.Glycol reclaimer[C].Offshore Mediterranean Conference and Exhibition,Ravenna,Italy,2003.
[10] THOMAS M.Precipitation of carbonates in the pretreatment process for regeneration of ethylene glycol[D].Norway:Norwegian University of Science and Technology,2011.
[11] GONZALEZ J J,ALFONSO M E,PELLEGRINO G.Corrosion of carbon steels in Mono Ethylene glycol[C].Nace International,Orlando,Florida,2000.
[12] MARIA N P,LEIL O J,KRISTIAN S,et al.Carbon dioxide solubility and monoethylene glycol(MEG)degradation at MEG reclaiming/regeneration conditions[J].Journal of Chemical & Engineering Data,2011,56(12):4720-4724.
[13] 梁平,单华,雷政,等.克拉2气田中央处理厂降低乙二醇损耗措施[J].天然气工业,2008,28(6):124-126. LIANG Ping,SHAN Hua,LEI Zheng,et al.Measures for reducing the glycol loss at the central natural gas processing plant in the kela-2 gas field[J].Natural Gas Industry,2008,28(6):124-126.
[14] IKEH L,ENYI G C,NASR G G.Inhibition performance of mild steel corrosion in the presence of CO2,HAc and MEG[C].Society of Petroleum Engineers,Aberdeen,Scotland,2016.
[15] ALHAROONI K,BARIFCANI A,PACK D,et al.Inhibition effects of thermally degraded MEG on hydrate formation for gas systems[J].Journal of Petroleum Science and Engineering,2015,135:608-617.
[16] 孙兰义.化工流程模拟实训-Aspen Plus教程[M].北京:化学工业出版社,2012. SUN Lanyi.Chemical engineering process simulation using Aspen plus[M].Beijing:Chemical Industry Press,2012.
[17] 龚文.基于流股和单元的热力学物性建模和计算方法研究[D].杭州:浙江大学,2015. GONG Wen.Stream-and-Unit based thermodynamic modeling and calculation method[D].Hangzhou:Zhe Jiang University,2015.
[18] HOLDERBAUM M,GMEHLING J.PSRK:A group contribution equation of state based on UNIFAC[J].Fluid Phase Equilibria,1991,70:251-265.
[19] 兰雪,夏力,项曙光.超额吉布斯自由能-状态方程模型的研究进展[J].化工进展,2014,33(2):304-308,352. LAN Xue,XIA Li,XIANG Shuguang.Research progress of GE-EOS models[J].Chemical Industry and Engineering Progress,2014,33(2):304-308,352.
[20] 王皓,陆康,彭璇.基于Wilson、UNIQUAC和NRTL活度系数模型的离子液体体系的相平衡比较[J].北京化工大学学报(自然科学版),2013,40(1):10-15. WANG Hao,LU Kang,PENG Xuan.Comparison of Wilson,UNIQUAC and NRTL activity coefficient models for the phase equilibria of systems containing Ionic liquids[J].Journal of Beijing University of Chemical Technology(Natural Science Edition),2013,40(1):10-15.
[21] 蒋晓伟,汪洋,关春欣.NRTL方程与SRK方程在非理想体系的气液平衡计算[J].化工设计,2007,17(5): 11-15. JIANG Xiaowei,WANG Yang,GUAN Chunxin.Calculation for vapor-liquid phase equilibrium of nonideal system with NRTL and SRK equation[J].Chemical Engineering Design,2007,17(5):11-15.
[22] 宗俊斌,张春娥,梁羽,等.乙二醇回收和脱盐技术在番禺项目中的研究及应用[J].中国造船,2014,55(增刊1):292-299. ZONG Junbin,ZHANG Chune,LIANG Yu,et al.Reach and application of MEG recovery desalting technology in Pan yu project[J].Shipbuilding of China,2014,55(S1):292-299.
[23] STEPHEN H,STEPHEN T.Solubilities of inorganic and organic compounds[M].Oxford:Pergamon Press,1963.
[24] 周晓红,郝蕴,衣华磊.荔湾3-1深水气田开发中心平台工艺设计若干问题研究[J].中国海上油气,2011,23(5):340-343. ZHOU Xiaohong,HAO Yun,YI Hualei.Research on process design issues of central platform in LW3-1 deepwater gas field development[J].China Offshore Oil and Gas,2011,23(5):340-343.
[25] AHMAD R,HAMED R,MORTAZA K.Design and simulation of Mono Ethylene Glycol recovery unit from effluent waste of Morvarid petrochemical Company-Iran[J].International Journal of Engineering Inventions,2015,10(4):39-48.

相似文献/References:

备注/Memo

备注/Memo:
*船舶行业预研计划项目“深海可燃冰开采装备总体技术研究(编号:QW2018.121-09004)”部分研究成果。 第一作者简介: 唐文献,男,博士,教授,主要从事深海装备开发方面的研究。地址:江苏省镇江市京口区梦溪路2号江苏科技大学东校区(邮编:212000)。E-mail:tangwenxian@163.com。 通信作者简介: 赵磊,男,在读硕士研究生,主要从事深海装备开发方面的研究,地址:江苏省镇江市京口区梦溪路2号江苏科技大学东校区(邮编:212000)。E-mail:643196393@qq.com。收稿日期:2019-10-21 改回日期:2019-11-27 (编辑:吕欢欢)
更新日期/Last Update: 2020-03-30