|本期目录/Table of Contents|

[1]杨 柳 冷润熙 常天全 卢志远 刘伊凡 葛洪魁.页岩气储层渗吸与盐离子扩散相关关系[J].中国海上油气,2020,32(02):112-119.[doi:10.11935/j.issn.1673-1506.2020.02.013]
 YANG Liu LENG Runxi CHANG Tianquan LU Zhiyuan LIU Yifan GE Hongkui.Correlation between the imbibition and salt ion diffusion of shale gas reservoirs[J].China Offshore Oil and Gas,2020,32(02):112-119.[doi:10.11935/j.issn.1673-1506.2020.02.013]
点击复制

页岩气储层渗吸与盐离子扩散相关关系()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第32卷
期数:
2020年02期
页码:
112-119
栏目:
钻采工程
出版日期:
2020-03-25

文章信息/Info

Title:
Correlation between the imbibition and salt ion diffusion of shale gas reservoirs
文章编号:
1673-1506(2020)02-0112-08
作者:
杨 柳1 冷润熙2 常天全2 卢志远2 刘伊凡1 葛洪魁3
(1. 中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室 北京 100083; 2. 中国石油新疆油田分公司勘探开发研究院 新疆克拉玛依 834000; 3. 中国石油大学(北京)非常规天然气研究院 北京 102249)
Author(s):
YANG Liu1 LENG Runxi2 CHANG Tianquan2 LU Zhiyuan2 LIU Yifan1 GE Hongkui3
(1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China; 2. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay, Xi
关键词:
页岩气储层 压裂 渗吸 离子扩散 返排率
Keywords:
shale gas reservoir fracturing imbibition ion diffusion cleanup rate
分类号:
TE357.1+1
DOI:
10.11935/j.issn.1673-1506.2020.02.013
文献标志码:
A
摘要:
综合考虑孔隙度、渗透率、含水饱和度差、表面张力、润湿角和单位壁面离子附着量等因素对页岩气储层渗吸和离子扩散能力的影响,基于气水两相渗流理论建立了压后闷井期间压裂液向储层渗吸和盐离子向压裂液扩散的数学模型,并进行了模型验证及影响因素分析,结果表明:压裂液向页岩中的渗吸和盐离子向压裂液中的扩散同步,且渗吸能力和离子扩散能力都与时间平方根保持了较好的线性关系。随着孔隙度和表面张力增加,渗吸速率和离子扩散速率同步增加; 随着页岩润湿角增加,渗吸速率和离子扩散速率同步减小; 随着渗透率和含水饱和度差增加,渗吸速率增加而离子扩散速率减小; 随着单位壁面离子附着量增加,离子扩散速率呈线性增加。本文研究结果可为深入认识压裂液返排率及返排液盐度变化的微观机理与控制因素,进而开展返排制度优化及压后评估提供借鉴意义。
Abstract:
Through comprehensively considering the effects of various factors(i.e., porosity, permeability, water saturation difference, surface tension, wetting angle and ion adhesion per unit wall surface)on the capacity of imbibition and ion diffusion, a post-fracturing mathematical model about the fracturing fluid permeating into reservoir and salt ion diffusing into fracturing fluid during the soaking period has been established based on the gas-water two-phase imbibition theory. The study results show that the imbibition of fracturing fluid into the shale and the diffusion of salt ions into the fracturing fluid are synchronized, and both the imbibition capacity and the ion diffusion capacity maintain a good linear relationship with the square root of time. As the porosity and surface tension increase, the imbibition rate and ion diffusion rate increase simultaneously; as the shale wetting angle increases, the imbibition rate and ion diffusion rate decrease simultaneously; as the permeability and water saturation difference increase, the imbibition rate increases and the ion diffusion rate decreases. The ion diffusion rate increases linearly with the ion adhesion per unit wall surface. The study results in this paper can provide references for in-depth understanding the micro-mechanisms and control factors of fracturing fluid cleanup rate and the salinity changes of returned fluid, and for the cleanup system optimization and post-fracturing evaluation.

参考文献/References:

[1] 姚军,孙海,黄朝琴,等.页岩气藏开发中的关键力学问题[J].中国科学:物理学 力学 天文学,2013,43(12):1527-1547. YAO Jun,SUN Hai,HUANG Chaoqin,et al.Key mechanical problems in the development of shale gas reservoirs(in Chinese)[J].Scientia Sinica Physica,Mechanica & Astronomica,2013,43(12):1527-1547.
[2] LAL M.Shale stability:drilling fluid interaction and shale strength[R].SPE-1199-0030-JPT,1999.
[3] ZOKFAGHARI A,DEHGHANPOUR H,BEARINGER,D.Fracture characterization using flowback salt-concentration transient[R].SPE-168598-PA,2016.
[4] 邱正松,李健鹰,沈忠厚.泥页岩水敏性评价新方法:比亲水量法研究[J].石油钻采工艺,1999,21(2):1-6. QIU Zhengsong,LI Jianying,SHEN Zhonghou.New method for water sensitivity evaluation of shale:A study on specific water wettability[J].Oil Drilling & Production Technology,1999,21(2):1-6.
[5] 陈勉,周健,金衍,等.随机裂缝性储层压裂特征实验研究[J].石油学报,2008,29(3):431-434. CHEN Mian,ZHOU Jian,JIN Yan,et al.Experimental study on fracturing features in naturally fractured reservoir[J].Acta Petrolei Sinica,2008,29(3):431-434.
[6] AGRAWAL S,SHARMA M M.Impact of liquid loading in hydraulic fractures on well productivity[R].SPE 1638837-MS,2013.
[7] YANG L,GE H,SHI X,et al.Experimental and numerical study on the relationship between water imbibition and salt ions diffusion in fractured shale reservoirs[J].Journal of Natural Gas Science and Engineering,2017,38:283-297.
[8] DEHGHANPOUR H,LAN Q,SAEED Y.et al.Spontaneous imbibition of brine and oil in gas shales:Effect of water adsorption and resulting micro fractures[J].Energy Fuels,2013,27(6):3039-3049.
[9] HALUSZCZAK L O,ROSE A W,KUMP L R.Geochemical evaluation of flowback brine from marcellus gas wells in Pennsylvania,USA[J].Applied Geochemistry,2013,28:55-61.
[10] KIM T W,KOVSCEK A R.The role of boundary conditions and characteristic length on imbibition in both sandstones and limestones[R].SPE-169540-MS,2014.
[11] KURTOGLU B.Integrated reservoir characterization and modeling in support of enhanced oil recovery for Bakken[J].Dissertations & Theses-Gradworks,2013,8:1505-1508.
[12] HU Q,EWING R P,DULTZ S.Low pore connectivity in natural rock[J].Journal of Contaminant Hydrology,2012,133:76-83.
[13] HANDY L L.Determination of effective capillary pressure for porous media from imbibition data[J].Petroleum Transactions,AIME,1960(219):75-80.
[14] JUNJIAN W,SHEIK S E.An Investigation of fluid leak-off due to osmotic and capillary effects and its impact on micro-fracture generation during hydraulic fracturing stimulation of gas shale[R].SPE-174392-MS,2015.
[15] KELLER W D,LIOVANDO M D C.Comparative chemical compositions of aqueous extracts from representative clays[J].American Mineralogis,1989,74:1142-1146.
[16] MOENCH A.Well test analysis in naturally fissured,geothermal reservoirs with fracture skin [R].Ninth Workshop Geothermal Reservoir Engineering,Stanford University:Stanford Calif.,1983.
[17] LUCAS R.Rate of capillary ascension of liquids [J].Kolloid Zeitschrift,1918,23:15-22.
[18] WASHBURN E W.Dynamics of capillary flow[J].Physical Reviews,1921,17(3):273-283.
[19] HANDY L L.Determination of effective capillary pressure for porous media from imbibition data [R].SPE 1361-G,1960.
[20] CIL M,REIS J C.A multi-dimensional,analytical model for counter-current water imbibition into gas-saturated matrix blocks[J].Journal of Petroleum Science & Engineering,1996,16(1-3):61-69.
[21] HALUSZCZAK L O,ROSE A W,KUMP L R.Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania,USA[J].Applied Geochemistry,2013,28:55-61.
[22] GHANBARI E,ABBASI M,DEHGHANPOUR H.Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[R].SPE 167165-MS,2013.
[23] NOVLESKY A,KUMAR A,MERKLE S.Shale gas modeling workflow from microseismic to simulation:A horn river case study[R].SPE-148710-MS,2011.

相似文献/References:

[1]郭 平,董 超,刘 旭,等.考虑压裂影响的低渗气藏高压平面供气机理探讨*[J].中国海上油气,2019,31(03):92.[doi:10.11935/j.issn.1673-1506.2019.03.011]
 GUO Ping,DONG Chao,LIU Xu,et al.Discussion on the mechanism of high pressure plane gas supply in low permeability fractured gas reservoir[J].China Offshore Oil and Gas,2019,31(02):92.[doi:10.11935/j.issn.1673-1506.2019.03.011]

备注/Memo

备注/Memo:
*国家自然科学青年基金资助项目“页岩储层压裂液渗吸与离子扩散相互作用机理研究(编号:11702296)”部分研究成果。 第一作者简介: 杨柳,男,博士,讲师,长期从事岩石与流体相互作用方面的研究。地址:北京市海淀区学院路丁11号(邮编:100083)。E-mail:shidayangliu@cumtb.edu.cn。收稿日期:2019-02-18 改回日期:2019-10-28 (编辑:孙丰成)
更新日期/Last Update: 2020-03-30