|本期目录/Table of Contents|

[1]鲁瑞彬 王雯娟 胡 琳 张风波 韩 鑫.高温高压气藏衰竭开发气水相渗变化规律探讨[J].中国海上油气,2020,32(02):88-95.[doi:10.11935/j.issn.1673-1506.2020.02.010]
 LU Ruibin WANG Wenjuan HU Lin ZHANG Fengbo HAN Xin.Discussion on the change laws of gas-water relative permeability in the depletion development of HTHP gas reservoirs[J].China Offshore Oil and Gas,2020,32(02):88-95.[doi:10.11935/j.issn.1673-1506.2020.02.010]
点击复制

高温高压气藏衰竭开发气水相渗变化规律探讨()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第32卷
期数:
2020年02期
页码:
88-95
栏目:
油气田开发(南海西部海域开发成果专辑)
出版日期:
2020-03-25

文章信息/Info

Title:
Discussion on the change laws of gas-water relative permeability in the depletion development of HTHP gas reservoirs
文章编号:
1673-1506(2020)02-0088-08
作者:
鲁瑞彬 王雯娟 胡 琳 张风波 韩 鑫
(中海石油(中国)有限公司湛江分公司 广东湛江 524057)
Author(s):
LU Ruibin WANG Wenjuan HU Lin ZHANG Fengbo HAN Xin
(CNOOC China Limited, Zhanjiang Branch, Zhanjiang, Guangdong 524057, China)
关键词:
高温高压 相渗实验 水驱气 衰竭开发 气水相渗曲线
Keywords:
high temperature and high pressure(HTHP) relative permeability experiment water drive gas depletion development gas-water relative permeability curve
分类号:
TE311
DOI:
10.11935/j.issn.1673-1506.2020.02.010
文献标志码:
A
摘要:
气水相渗曲线一般在常温常压下利用非稳态气驱水实验获得,所得实验结果难以表征高温高压气藏衰竭开发过程中气水两相渗流变化规律。设计了不同温压条件、驱替方式、有效应力下气水相渗实验,结果表明,与地面条件相比,地层高温高压条件下水气黏度比、界面张力均降低,气驱水可使束缚水饱和度降低8%~13%,两相共渗区增加8%~15%; 水驱气实验较气驱水实验相渗曲线整体偏左,分析认为高温高压水驱气实验能真实模拟实际气藏衰竭开发过程,结果更具代表性; 不同有效应力下水驱气相渗实验,由于应力敏感的存在,相渗曲线整体下移,驱替效率降低约3.5%。在此基础上,统计分析了相渗曲线特征值及其形态参数变化规律,建立了衰竭开发过程气水相渗变化图版。本文研究成果可以应用到数值模拟中,指导高温高压气藏合理开发。
Abstract:
The gas-water relative permeability curve is generally obtained by unsteady gas drive water experiment under normal temperature and pressure, and the experimental results are difficult to characterize the change laws of gas-water two-phase percolation in the depletion development of HTHP gas reservoir. The experiments of gas-water relative permeability under different temperature and pressure conditions, displacement modes and effective stress are designed, and the results show that under the condition of in-situ HTHP, the viscosity ratio and interfacial tension of water and gas are both lower than that under the ground conditions. After the application of gas drive water, the irreducible water saturation has been reduced by 8%~13% and the two-phase infiltration area has been increased by 8%~15%. Compared with gas drive water experiment, the relative permeability curve of water drive gas experiment is generally on the left. The analysis suggests that the HTHP water drive gas experiment can simulate the actual depletion development process of gas reservoirs, and the results are more representative. Due to the existence of stress sensitivity, the relative permeability curve of water drive gas experiment migrates down as a whole and the displacement efficiency decreases by about 3.5%. On this basis, the characteristic values of relative permeability curve and the change laws of its shape parameters are statistically analyzed, and the change chart of gas-water relative permeability in depletion development is further established. The research results in this paper can be applied in numerical simulation to guide the reasonable development of HTHP gas reservoirs.

参考文献/References:

[1] 张艳玉,陈钢,何鲁平,等.天然气驱长岩心室内实验研究[J].实验力学,2007,22(2):161-165. ZHANG Yanyu,CHEN Gang,HE Luping,et al.A study on long-core experiment of natural gas driving[J].Journal of Experimental Mechanics,2007,22(2):161-165.
[2] 朱光亚,刘先贵,高树生,等.低渗透气藏气水两相渗流模型及其产能分析[J].天然气工业,2009,29(9):67-70. ZHU Guangya,LIU Xiangui,GAO Shusheng,et al.A gas-water two-phase flow model for low permeability gas reservoirs and deliverability analysis thereof[J].Natural Gas Industry,2009,29(9):67-70.
[3] 莫邵元,何顺利,雷刚,等.致密气藏气水相对渗透率理论及实验分析[J].天然气地球科学,2015,26(11):2149-2154. MO Shaoyuan,HE Shunli,LEI Gang,et al.Theoretical and experimental analysis of gas-water relative permeability in tight gas[J].Natural Gas Geoscience,2015,26(11):2149-2154.
[4] 周锴,孙卫,王证,等.苏里格气田东区中二叠统盒-8—山-1段致密砂岩储层相渗特征及影响因素[J].天然气勘探与开发,2016,39(2):31-35,10-11. ZHOU Kai,SUN Wei,WANG Zheng,et al.Relative permeability characteristics of tight sandstone reservoir form ShiHeZi8 to Shanxi1 members,eastern Sulige gas field[J].Natural Gas Exploration and Development,2016,39(2):31-35,10-11.
[5] 王雯娟,雷霄,鲁瑞彬,等.南海西部异常高温高压气藏区域产能预测技术[J].地球科学,2019,44(8):2636-2642. WANG Wenjuan,LEI Xiao,LU Ruibin,et al.Regional productivity prediction technology for abnormal high temperature and high pressure gas reservoirs in western South China Sea[J].Earth Science,2019,44(8):2636-2642.
[6] 谢玉洪.南海西部低渗油气藏勘探开发探索与实践 [J].中国海上油气,2018,30(6):80-85.DOI:10.11935/j.issn.1673-1506.2018.06.009. XIE Yuhong.Exploration and practice of low permeability reservoirs exploration and development in western South China Sea[J].China Offshore Oil and Gas,2018,30(6):80-85.DOI:10.11935/j.issn.1673-1506.2018.06.009.
[7] 姜瑞忠,韩光伟,汪洋,等.低渗气藏特殊渗流机理及稳定产能预测方法[J].石油钻采工艺,2015,37(4):67-71. JIANG Ruizhong,HAN Guangwei,WANG Yang,et al.Research on special seepage mechanism and prediction method for stable productivity of low permeability gas pools[J].Oil Drilling & Production Technology,2015,37(4):67-71.
[8] 李华,成涛,陈建华,等.南海西部海域莺歌海盆地东方1-1气田开发认识及增产措施研究[J].天然气勘探与开发,2014,37(4):33-37,9. LI Hua,CHENG Tao,CHEN Jianhua,et al.Dong fang 1-1 gas field development and its stimulation measures,Yinggehai basin,western South China sea[J].Natural Gas Exploration and Development,2014,37(4):33-37,9.
[9] 温伟明,朱绍鹏,李茂.海上异常高压气藏应力敏感特征及产能方程:以莺歌海盆地为例[J].天然气工业,2014,34(9):59-63. WEN Weiming,ZHU Shaopeng,LI Mao.Stress sensitivity features and productivity equations of offshore abnormal high-pressure gas reservoirs:A case study from the Yinggehai Basin[J].Natural Gas Industry,2014,34(9):59-63.
[10] 郭平,邓垒,刘启国,等.低渗气藏多次应力敏感测试及应用[J].西南石油大学学报(自然科学版),2008,30(2):78-82,191. GUO Ping,DENG Lei,LIU Qiguo,et al.Test and application of multiple stress sensitivity of low permeability gas reservoir[J].Journal of Southwest Petroleum University(Science & Technology Edition),2008,30(2):78-82,191.
[11] 何文祥,杨乐,马超亚,等.特低渗透储层微观孔隙结构参数对渗流行为的影响:以鄂尔多斯盆地长6储层为例[J].天然气地球科学,2011,22(3):477-481,517. HE Wenxiang,YANG Le,MA Chaoya,et al.Effect of Micro-Pore structure parameter on seepage characteristics in Ultra-Low permeability reservoir:a case from chang 6 reservoir of ordos basin[J].Natural Gas Geoscience,2011,22(3):477-481,517.
[12] 叶礼友,高树生,杨洪志,等.致密砂岩气藏产水机理与开发对策[J].天然气工业,2015,35(2):41-46. YE Liyou,GAO Shusheng,YANG Hongzhi,et al.Water production mechanism and development strategy of tight sandstone gas reservoirs[J].Natural Gas Industry,2015,35(2):41-46.
[13] 罗顺社,彭宇慧,魏新善,等.苏里格气田致密砂岩气水相渗曲线特征与分类[J].西安石油大学学报(自然科学版),2015,30(6):55-61,9. LUO Shunshe,PENG Yuhui,WEI Xinshan,et al.Characteristic and classification of gas-water relative permeability curves of tight sandstone reservoirs in Sulige gas field[J].Journal of Xi'an Shiyou University(Natural Science Edition),2015,30(6):55-61,9.
[14] 中国石油天然气总公司.SY/T 5345-2007岩石中两相流体相对渗透率测定方法[S].北京:石油工业出版社,2008.
[15] 钟晓,杜建芬.气水相渗特征与高温高压实验研究[J].重庆科技学院学报(自然科学版),2013,15(3):70-73. ZHONG Xiao,DU Jianfen.Gas-water permeability characteristic and HTHP experimental study[J].Journal of Chongqing Institute of Science and Technology(Natural Science Edition),2013,15(3):70-73.
[16] 郭肖,杜志敏,姜贻伟,等.温度和压力对气水相对渗透率的影响[J].天然气工业,2014,34(6):60-64. GUO Xiao,DU Zhimin,JIANG Yiwei,et al.Can gas-water relative permeability measured under experiment conditions be reliable for the development guidance of a real HPHT reservoir?[J].Natural Gas Industry,2014,34(6):60-64.
[17] 易敏,郭平,孙良田.非稳态法水驱气相对渗透率曲线实验[J].天然气工业,2007,27(10):92-94,141-142. YI Min,GUO Ping,SUN Liangtian.An experimental study on relative permeability curve for unsteady-state gas displacement by water[J].Natural Gas Industry,2007,27(10):92-94,141-142.
[18] 周克明,张清秀,王勤,等.利用分形模型计算气水相对渗透率[J].天然气工业,2007,27(10):88-89,141. ZHOU Keming,ZHANG Qingxiu,WANG Qin,et al.Calculation of gas and water relative permeability by the fractal mode[J].Natural Gas Industry,2007,27(10):88-89,141.
[19] 方建龙,郭平,肖香姣,等.高温高压致密砂岩储集层气水相渗曲线测试方法[J].石油勘探与开发,2015,42(1):84-87. FANG Jianlong,GUO Ping,XIAO Xiangjiao,et al.Gas-water relative permeability measurement of HTHP tight gas reservoirs[J].Petroleum Exploration and Development,2015,42(1):84-87.
[20] 李登伟,张烈辉,周克明,等.可视化微观孔隙模型中气水两相渗流机理[J].中国石油大学学报(自然科学版),2008,32(3):80-83. LI Dengwei,ZHANG Liehui,ZHOU Keming,et al.Gas-water two phase flow mechanism in visual microscopic pore model[J].Journal of China University of Petroleum(Edition of Natural Science),2008,32(3):80-83.
[21] 杨满平,李允,彭彩珍.气藏储层含束缚水的应力敏感性分析[J].天然气地球科学,2004,15(4):391-394. YANG Manping,LI Yun,PENG Caizhen.Analysis of stress senstivity for irreducible water of gas reservoir[J].Natural Gas Geoscience,2004,15(4):391-394.
[22] 李跃刚,王文举,万单夫,等.应力敏感对致密砂岩气藏气水两相渗流特征影响研究[J].科学技术与工程,2017,17(3):69-73. LI Yuegang,WANG Wenju,WAN Danfu,et al.Effect of stress sensitivity on characteristics of gas water two-phase flow in tight sandstone gas reservoir[J].Science Technology and Engineering,2017,17(3):69-73.

相似文献/References:

备注/Memo

备注/Memo:
*“十三五”国家科技重大专项“莺琼盆地高温高压天然气富集规律与勘探开发关键技术(三期)(编号:2016ZX05024-005)”部分研究成果。 第一作者简介: 鲁瑞彬,男,工程师,主要从事油气田开发及规划方面的研究。地址:广东省湛江市坡头区南油二区地宫楼102(邮编:524057)。E-mail:lurb4@cnooc.com.cn。收稿日期:2019-11-11 改回日期:2019-12-18 (编辑:杨 滨)
更新日期/Last Update: 2020-03-30