|本期目录/Table of Contents|

[1]田家林 何虹志 杨 琳 杨应林 宫学成 胡志超 李居瑞.新型射流振荡减摩阻工具设计及内部流场特性数值模拟分析与实验验证[J].中国海上油气,2020,32(01):125-133.[doi:10.11935/j.issn.1673-1506.2020.01.015]
 TIAN Jialin HE Hongzhi YANG Lin YANG Yinglin GONG Xuecheng HU Zhichao LI Jurui.Design of a new jet oscillation friction reducing tool and the numerical simulation analysis and experimental testing on its internal flow field characteristics[J].China Offshore Oil and Gas,2020,32(01):125-133.[doi:10.11935/j.issn.1673-1506.2020.01.015]
点击复制

新型射流振荡减摩阻工具设计及内部流场特性数值模拟分析与实验验证()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第32卷
期数:
2020年01期
页码:
125-133
栏目:
钻采工程
出版日期:
2020-01-15

文章信息/Info

Title:
Design of a new jet oscillation friction reducing tool and the numerical simulation analysis and experimental testing on its internal flow field characteristics
文章编号:
1673-1506(2020)01-0125-09
作者:
田家林1 何虹志1 杨 琳1 杨应林1 宫学成2 胡志超1 李居瑞1
(1. 西南石油大学机电工程学院 四川成都 610500; 2. 中海油海洋石油工程(青岛)有限公司 山东青岛 266520)
Author(s):
TIAN Jialin1 HE Hongzhi1 YANG Lin1 YANG Yinglin1 GONG Xuecheng2 HU Zhichao1 LI Jurui1
(1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 2. CNOOC Offshore Oil Engineer(Qingdao)Ltd., Qingdao, Shandong 266520, China)
关键词:
射流振荡减摩阻工具 射流短节 流场特性 数值模拟 实验研究
Keywords:
jet oscillation friction reducing tool jet sub flow field characteristics numerical simulation experimental research
分类号:
TE921+.2
DOI:
10.11935/j.issn.1673-1506.2020.01.015
文献标志码:
A
摘要:
为了解决井下减摩阻工具结构复杂、易受地层环境影响的问题,设计了新型射流振荡减摩阻工具,并对该工具内部流场特性进行了数值模拟分析,结果表明:新型射流振荡减摩阻工具射流短节内部流体存在附壁与切换现象; 随着入口流速的增加,射流短节振荡室内流体流动状态从无规则变为规则的旋流流动,当入口流速继续增大则转变为无规则流动状态; 工具稳定工作后,分流中心点处压力呈现周期性变化。实验测试结果与数值模拟分析结果较为吻合,验证了射流振荡减摩阻工具结构设计的合理性和可靠性。本文研究结果可为射流振荡减摩阻工具结构优化设计提供参考。
Abstract:
In order to solve the problems of the complex structure of downhole friction reducing tool and its susceptibility to formation environment, a new jet oscillation friction reducing tool was designed, and numerical simulation analysis and experimental verification were carried out to study the internal flow field characteristics of this tool. The results show that the wall attachment and switching of fluids inside the jet sub of this jet oscillation friction reducing tool are observed; as the inlet velocity increases, the state of fluid flow in the oscillation chamber of jet sub changes from random flow into regular swirling flow. When the flow rate continues to increase, it will change into an irregular flow. Once the tool works stably, the pressure at the shunt center point shows a periodical change. The experimental results are in good agreement with the results of numerical simulation analysis, which verifies the rationality and reliability of the structural design of this jet oscillation friction reducing tool. The research results in this paper can provide a reference for the optimal structural design of jet oscillation friction reducing tool.

参考文献/References:

[1] ELGIBALY A A,FARHAT M S,TRANT E W,et al.A study of friction factor model for directional wells[J].Egyptian Journal of Petroleum,2017,26(2):489-504.
[2] TIAN J,YANG Y,YANG L.Vibration characteristics analysis and experimental study of horizontal drill string with wellbore random friction force[J].Archive of Applied Mechanics,2017,87(9):1439-1451.
[3] JACULLI M A,MENDES J R P,MIURA K.Dynamic buckling with friction inside directional wells[J].Journal of Petroleum Science & Engineering,2017,153:145-156.
[4] 范白涛,赵少伟,李凡,等.渤海浅部复杂地层大位移井钻井工艺研究与实践[J].中国海上油气,2013,25(3):50-52.FAN Baitao,ZHAO Shaowei,LI Fan,et al.Research and application of ERW drilling technology for shallow complicated formation in Bohai oilfield[J].China Offshore Oil and Gas,2013,25(3):50-52.
[5] LIVESCU S,CRAIG S.A critical review of the coiled tubing friction-reducing technologies in extended-reach wells:part 2:vibratory tools and tractors[J].Journal of Petroleum Science and Engineering,2018,166:44-54.
[6] LIU Yang,CHEN Ping,WANG Xingming,et al.Modeling friction-reducing performance of an axial oscillation tool using dynamic friction model[J].Journal of Natural Gas Science & Engineering,2016,33:397-404.
[7] 胡书勇,张烈辉,寥清碧,等.现代钻井技术的发展与油气勘探开发的未来[J].天然气工业,2005,25(2):93-96.HU Shuyong,ZHANG Liehui,LIAO Qingbi,et al.Development of modern drilling technology and future of petroleum exploration and production[J].Natural Gas Industry,2005,25(2):93-96.
[8] 刘永旺,管志川,张洪宁,等.基于钻柱振动的井下提速技术研究现状及展望[J].中国海上油气,2017,29(4):131-137.DOI:10.11935/j.issn.1673-1506.2017.04.017.LIU Yongwang,GUAN Zhichuan,ZHANG Hongning,et al.Research status and prospect of ROP-enhancing technology based on drill string vibration[J].China Offshore Oil and Gas,2017,29(4):131-137.DOI:10.11935/j.issn.1673-1506.2017.04.017.
[9] TIAN J,YANG Z,LI Y,et al.Vibration analysis of new drill string system with hydro-oscillator in horizontal well[J].Journal of Mechanical Science and Technology,2016,30(6):2443-2451.
[10] SARKER M,RIDEOUT D G,BUTT S D.Dynamic model for longitudinal and torsional motions of a horizontal oil well drill string with wellbore stick-slip friction[J].Journal of Petroleum Science and Engineering,2017,150:272-287.
[11] TIAN J,HU S,LI Y,et al.Vibration characteristics analysis and experimental study of new drilling oscillator[J].Advances in Mechanical Engineering,2016,8(6):1-10.
[12] BESSELINK B,VROMEN T,KREMERS N,et al.Analysis and control of stick-slip oscillations in drilling systems[J].IEEE Transactions on Control Systems Technology,2016,24(5):1582-1593.
[13] 陈朝伟,周英操,申瑞臣,等.连续管钻井减摩技术综述[J].石油钻探技术,2010,38(1):29-31.CHEN Chaowei,ZHOU Yingcao,SHEN Ruichen,et al.Overview of drag reducing technologies in coiled tubing drilling[J].Petroleum Drilling Techniques,2010,38(1):29-31.
[14] 欧阳赛赛,葛云华,崔龙连,等.连续管钻井双向振动减阻工具设计与试验研究[J].石油机械,2017,45(11):18-22,76.OUYANG Saisai,GE Yunhua,CUI Longlian,et al.Design and experimental study on two-way vibration drag reduction tool for coiled tubing drilling[J].China Petroleum Machinery,2017,45(11):18-22,76.
[15] TIAN Jialin,YANG Yinglin,DAI Liming,et al.Kinetic characteristics analysis of a new torsional oscillator based on impulse response[J].Archive of Applied Mechanics,2018,88(10):1877-1891.
[16] 侯硕,曹义华.基于雷诺平均Navier-Stokes方程的表面传热系数计算[J].航空动力学报,2015,30(6):1319-1327.HOU Shuo,CAO Yihua.Calculation of surface heat transfer coefficient based on Reynolds-averaged Navier-Stokes equations[J].Journal of Aerospace Power,2015,30(6):1319-1327.
[17] 李海涛,刘权,王楠,等.水平井新型自动流入控制器的研发与流体敏感性分析[J].中国海上油气,2019,31(1):126-132.DOI:10.11935/j.issn.1673-1506.2019.01.015.LI Haitao,LIU Quan,WANG Nan,et al.R&D of a new autonomous inflow control device for horizontal wells and fluid sensitivity analysis[J].China Offshore Oil and Gas,2019,31(1):126-132.DOI:10.11935/j.issn.1673-1506.2019.01.015.
[18] 林建忠.流体力学[M].2版.北京:清华大学出版社,2013.

相似文献/References:

备注/Memo

备注/Memo:
*“十三五”国家科技重大专项“大型油气田及煤层气开发(编号:2016ZX05038)”部分研究成果。第一作者简介: 田家林,男,教授,2009年毕业于西南石油大学,获博士学位,主要从事机械设计及理论、石油矿场机械、井下工具、非线性振动与控制等方面的研究。地址:四川省成都市新都区新都大道8号西南石油大学机电工程学院(邮编:610500)。E-mail:tianjialin001@gmail.com。通信作者简介: 何虹志,男,在读硕士研究生,主要从事机械设计与理论研究、井下工具设计。E-mail:204
更新日期/Last Update: 2020-01-15