|本期目录/Table of Contents|

[1]赵 楠 王 磊 黄 俊 张 辉 彭小东.不同岩性低渗储层分形特征对比及成因分析[J].中国海上油气,2020,32(01):87-94.[doi:10.11935/j.issn.1673-1506.2020.01.010]
 ZHAO Nan WANG Lei HUANG Jun ZHANG Hui PENG Xiaodong.Fractal characteristics comparison and genetic analysis of low permeability reservoirs with different lithologies[J].China Offshore Oil and Gas,2020,32(01):87-94.[doi:10.11935/j.issn.1673-1506.2020.01.010]
点击复制

不同岩性低渗储层分形特征对比及成因分析()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第32卷
期数:
2020年01期
页码:
87-94
栏目:
油气田开发
出版日期:
2020-01-15

文章信息/Info

Title:
Fractal characteristics comparison and genetic analysis of low permeability reservoirs with different lithologies
文章编号:
1673-1506(2020)01-0087-08
作者:
赵 楠 王 磊 黄 俊 张 辉 彭小东
(中海石油(中国)有限公司湛江分公司 广东湛江 524057)
Author(s):
ZHAO Nan WANG Lei HUANG Jun ZHANG Hui PENG Xiaodong
(CNOOC China Limited, Zhanjiang Branch, Zhanjiang, Guangdong 524057, China)
关键词:
南海西部 低渗油藏 储层岩性 分形特征 微观孔喉结构 渗流能力
Keywords:
the western South China Sea low permeability reservoir reservoir lithology fractal characteristics micro pore throat structure seepage capability
分类号:
TE348
DOI:
10.11935/j.issn.1673-1506.2020.01.010
文献标志码:
A
摘要:
针对南海西部涠洲1-1、乌石1-1、文昌1-1等3个典型低渗油藏的储层岩性不同导致微观孔喉结构特征与渗流规律存在明显差异的问题,选取研究区173块岩样的压汞实验数据并利用分形理论进行了不同岩性低渗储层分形特征的差异对比,同时结合铸体薄片实验进行了成因分析。涠洲1-1油田细砂岩储层发育原生粒间孔,分形曲线呈线性特征; 乌石1-1油田砂砾岩储层原生孔与次生孔共生,长石溶孔发育,分形曲线呈“凹”形折线特征,随孔喉半径的增大,分形维数呈现“小-大-小”的特点; 文昌1-1油田粉砂岩储层原生孔与次生孔共生,泥质、有机质对粒间孔隙的充填增加了孔喉结构的复杂性,分形特征曲线呈“凸”形折线特征,分形维数随孔喉半径增大而增大。通过对比相同孔喉尺度范围不同岩性储层的分形曲线,认为影响低渗储层渗流能力的主要因素是微观孔喉结构的差异尤其是较大尺寸孔喉的分形特征与所占比例,因此研究区3种岩性储层渗流能力由好到差依次为涠洲1-1油田细砂岩、乌石1-1油田砂砾岩和文昌1-1油田粉砂岩。
Abstract:
For the problem that different lithologies of the three typical low permeability reservoirs of WZ1-1, WS1-1 and WC1-1 in the western South China Sea have led to obvious differences in the micro pore throat structure characteristics and the seepage law, the mercury penetration test data of 173 rock samples in the study area were selected. Besides, the differences in the fractal characteristics of low permeability reservoirs with different lithologies were compared by using the fractal theory, and the geneses of the reservoirs were analyzed in combination with the casting thin section experiment. Primary intergranular pores were developed in the fine sandstone reservoir of WZ1-1 oilfield, and the fractal curve was linear. The primary and secondary pores coexisted in the sand-conglomerate reservoir of WS1-1 oilfield, with feldspar dissolved pores developed and the fractal curve appearing as the “concave” broken line. With the increase of pore throat radius, the fractal dimension presented the characteristics of “small-large-small”. Similarly, the primary and secondary pores coexisted in the siltstone reservoir of WC1-1 oilfield. The filling of intergranular pores by argillaceous and organic matters increased the complexity of pore throat structure. The fractal characteristic curve showed a “convex” curve, and the fractal dimension increased with the pore throat radius. By comparing the fractal curves of reservoirs with the same pore throat scale range and different lithologies, it is considered that the main factor affecting the seepage capability of low permeability reservoirs is the difference in micro pore throat structures, especially the fractal characteristics and proportion of larger pore throat. Therefore, the seepage capabilities of those three types of reservoirs are ranked from good to poor as the fine sandstone reservoir in WZ1-1 oilfield, the sand-conglomerate reservoir in WS1-1 oilfield and the siltstone reservoir in WC1-1 oilfield.

参考文献/References:

[1] 谢玉洪.南海西部低渗油气藏勘探开发探索与实践[J].中国海上油气,2018,30(6):80-85.DOI:10.11935/issn.1673-1506.2018.06.009. XIE Yuhong.Exploration and practice of low permeability reservoirs exploration and development in western South China Sea[J].China Offshore Oil and Gas,2018,30(6):80-85.DOI:10.11935/issn.1673-1506.2018.06.009.
[2] MANDELBROT B B.The fractal geometry of Nature[M].New York,1982.
[3] KATZ A J,THOMPSON A H.Fractal sandstone pores:Implications for conductivity and pore formation[J].Physical Review Letters,1985,54(12):1325-1328.
[4] KROHN C E.Sandstone fractal and euclidean pore volume distributions[J].Journal of Geophysical Research Atmospheres,1988,93(B4):3286-3296.
[5] 贺伟钟,孚勋,贺承祖,等.储层岩石孔隙的分形结构研究和应用[J].天然气工业,2000,20(2):67-70. HE Weizhong,FU Xun,HE Chengzu,et al.Fractal texture researchon the pores in reservoir rocks and its application[J].Natural Gas Industry,2000,20(2):67-70.
[6] 李留仁,赵艳艳,李忠兴,等.多孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报(自然科学版),2004,28(3):105-107,114. LI Liuren,ZHAO Yanyan,LI Zhongxing,et al.Fractal characteristics of micropore structure of porous media and the meaning of fractal coefficient[J].Journal of the University of Petroleum,China(Edition of Natural Science),2004,28(3):105-107,114.
[7] RADLINSKI A P,IOANNIDIS M A,HINDE A L,et al.Angstrom-to-millimeter characterization of sedimentary rock microstructure[J].Journal of Colloid and Interface Science,2004,274(2):607-612.
[8] 熊健,刘向君,梁利喜.四川盆地富有机质页岩孔隙分形特征断块油气田[J].断块油气田,2017,24(2):184-189. XIONG Jian,LIU Xiangjun,LIANG Lixi.Fractal pore characteristics of organic shale in Sichuan Basin[J].Fault-Block Oil and Gas Field,2017,24(2):184-189.
[9] 贾芬淑,沈平平,李克文.砂岩孔隙结构的分形特征及应用研究[J].断块油气田,1995,2(1):16-21. JIA Fenshu,SHEN Pingping,LI Kewen.Fractal characteristics and application of sandstone pore structure[J].Fault-Block Oil and Gas Field,1995,2(1):16-21.
[10] PENG RuiDong,YANG YanCong,JU Yang,etal.Computation of fractal dimension of rock pores based on gray CT images.Chinese Science Bulletin[J].2011,11(1):3346-3357.
[11] CAI Yidong,LIU Dameng,PAN Zhejun,et al.Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J].Fuel,2013,103:258-268.
[12] 陈亮,谭凯旋,刘江,等.新疆某砂岩铀矿含矿层孔隙结构的分形特征[J].中山大学学报(自然科学版),2012,51(6):139-144. CHEN Liang,TAN Kaixuan,LIU Jiang,et al.Pore structure fractal features of the pore-bearing layer from a sandstone-type uranium deposit,Xinjiang[J].Acta Scifntiarum Naturalium Universitatis Sunyaatseni,2012,51(6):139-144.
[13] 吴浩,刘锐娥,纪友亮,等.致密气储层孔喉分形特征及其与渗流的关系:以鄂尔多斯盆地下石盒子组盒8段为例[J].沉积学报,2017,35(1):151-162. WU Hao,LIU Ruie,JI Youliang,et al.Fractal characteristics of pore-throat of tight gas reservoirs and its relation with percolation: A case from He 8 Member of the Permian Xiashihezi Formation in Ordos Basin[J].Acta Sedimentologica Sinica,2017,35(1):151-162.
[14] LI K.Characterization of rock h et er ogeneity using fractal geometry[ R].SPE86975,2004.
[15] 贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):17-25. HE Chengzu,HUA Mingqi.Fractal geometric description of reservoir pore structure[J].Oil & Gas Geology,1998,19(1):17-25.
[16] 高树生,胡志明,刘华勋,等.不同岩性储层的微观孔隙特征[J].石油学报,2016,37(2):248-256. GAO Shusheng,HU Zhiming,LIU Huaxun,et al.Micropore characteristics of different lithologic reservoirs[J].Acta Petrolei Sinica,2016,37(2):248-256.
[17] 张闯辉,朱炎铭,刘宇,等.不同成熟度页岩孔隙及其分形特征[J].断块油气田,2016,23(5):583-588. ZHANG Chuanghui,ZHU Yanming,LIU Yu,et al.Shale pore and its fractal characteristics with different maturity[J].Fault-Block Oil and Gas Field,2016,23(5):583-588.
[18] 陈程,孙义梅.砂岩孔隙结构分维及其应用[J].沉积学报,1996,14(4):109-114. CHEN Cheng,SUN Yimei.Fractal dimension of sandstone pore structure and its application[J].Acta Sedimentologica Sinica,1996,14(4):109-114.
[19] 蒲秀刚,吴永平,周建生,等.低渗油气储层孔喉的分形结构与物性评价新参数[J].天然气工业,2005,25(12):37-39. PU Xiugang,WU Yongping,ZHOU Jiansheng,et al.New parameters for fractal structure and physical property evaluation of pore throats in low permeability reservoirs[J].Natural Gas Industry,2005,25(12):37-39.

相似文献/References:

备注/Memo

备注/Memo:
*“十三五”国家科技重大专项“南海西部海域低渗油藏勘探开发关键技术(编号:2016ZX05024-006)”部分研究成果。 第一作者简介: 赵楠,女,工程师,硕士,从事油气田开发研究工作。地址:广东省湛江市坡头区南油二区研究院(邮编:524057)。E-mail:zhaonan@cnooc.com.cn。收稿日期:2019-03-18 改回日期:2019-08-12
更新日期/Last Update: 2020-01-15