|本期目录/Table of Contents|

[1]付 强 杜志敏 王硕亮.考虑动态相对渗透率曲线的油藏数值模拟方法[J].中国海上油气,2020,32(01):79-86.[doi:10.11935/j.issn.1673-1506.2020.01.009]
 FU Qiang DU Zhimin WANG Shuoliang.A reservoir numerical simulation method that takes dynamic relative permeability curve into account[J].China Offshore Oil and Gas,2020,32(01):79-86.[doi:10.11935/j.issn.1673-1506.2020.01.009]
点击复制

考虑动态相对渗透率曲线的油藏数值模拟方法()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第32卷
期数:
2020年01期
页码:
79-86
栏目:
油气田开发
出版日期:
2020-01-15

文章信息/Info

Title:
A reservoir numerical simulation method that takes dynamic relative permeability curve into account
文章编号:
1673-1506(2020)01-0079-08
作者:
付 强123 杜志敏12 王硕亮4
(1. 油气藏地质与开发工程国家重点实验室 四川成都 610500; 2. 西南石油大学石油与天然气工程学院 四川成都 610500; 3. 中海油研究总院有限责任公司 北京 100028; 4. 中国地质大学(北京)北京 100083)
Author(s):
FU Qiang123 DU Zhimin12 WANG Shuoliang4
(1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, Sichuan 610500, China; 2. School of Oil & Natural Gas Engineering of Geosciences and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500,China; 3. CN
关键词:
动态相对渗透率曲线 数值模拟 物理模拟 流动速度
Keywords:
dynamic relative permeability curve numerical simulation physical simulation flow velocity
分类号:
TE243
DOI:
10.11935/j.issn.1673-1506.2020.01.009
文献标志码:
A
摘要:
中国海上油田在高含水期遇到了很多新问题,生产动态反映出开发效果对采油速度敏感。本文开展了流体流动速度对油水相对渗透率的影响研究,采用非稳态法测试得到了不同流速的非稳态相对渗透率曲线,分析发现:当流速小于1 mL/min时,随着驱替速度的增加,水相相对渗透率和油相相对渗透率增加,残余油饱和度降低; 当流速大于1 mL/min时,随着驱替速度的增加,水相相对渗透率和油相相对渗透率降低,残余油饱和度增加。建立了动态相对渗透率计算模型,将动态相对渗透率计算模型引入到传统方法中,对油水两相数值模拟模型进行了修正,结果表明,水井附近和油井附近考虑动态相对渗透率曲线的数值模拟器计算得到的含水饱和度数值高于传统数值模拟方法计算得到的含水饱和度,注采连线方向上润湿相饱和度曲线会出现漏斗形态。利用中国海上某油田实际数据,验证了本文提出的新方法的准确性。
Abstract:
numerous new problems have been encountered in China offshore oilfields during the high water cut period, and the production performance suggests that the development effect is sensitive to oil production rate. In this paper, the influences of fluid flow velocity on oil-water relative permeability are studied, Firstly, the unsteady relative permeability curves at different flow rates are obtained by using the unsteady test method, and analysis suggests that when the flow rate is less than 1 mL/min, as the displacing velocity increases, the relative permeability of water phase increases, that of oil phase increases and the residual oil saturation decreases; when the flow rate is more than 1 mL/min, as the displacing velocity increases, the relative permeability of water phase decreases, that of oil phase decreases, and the residual oil saturation increases. In this paper, a dynamic relative permeability calculation model is established, which introduces the dynamic relative permeability calculation model into the conventional numerical simulation methods, and makes a modification on the oil-water two-phase numerical simulation model. The results show that for areas in the vicinity of water wells and oil wells, the water saturation value obtain by the numerical simulator considering the dynamic relative permeability curve is higher than the value calculated by the conventional numerical simulation methods, and the wetting phase curve appears as a funnel shape in the direction of injection-production line. The accuracy of the proposed new method is verified by using the actual data of an offshore oilfield in China.

参考文献/References:

[1] OSOBA J S,RICHARDSON J G,KERVER J K,et al.Laboratory measurements of relative permeability[J].Journal of Petroleum Technology,1951,3(2):47-56.
[2] CAUDLE B H,SLOBOD R L,BROWNSCOMBE E R.Further developments in the laboratory determination of relative permeability[J].Journal of Petroleum Technology,1951,3(5):145-150.
[3] SANDBERG C R,GOURNAY L S,SIPPEL RF.The effect of fluid-flow rate and viscosity on laboratory determinations of oil-water relative permeabilities[J].Society of Petroleum Engineers,1958,213(2):36-43.
[4] PETERS E J,KHATANIAR S.The effect of instability on relative permeability curves obtained by the dynamic-displacement method[J].SPE Formation Evaluation,1987,2(4):469-474.
[5] PETERS E J,FLOCK D L.The onset of instability during two-phase immiscible displacement in porous media[J].Society of Petroleum Engineers Journal,1981,21(2):249-258.
[6] ANZ J W,ELLSUZ M.Development and operation of the El Gueria reservoir,Ashtart field,offshore Tunisia[J].Journal of Petroleum Technology,1985,37(3):481-487.
[7] LEVERETT M C.Flow of oil-water mixtures through unconsoli-dated sands[J].Transactions of the Aime,1939,132(4):149-171.
[8] RAPOPORT L A,LEAS W J.Properties of linear waterfloods[J].Journal of Petroleum Technology,1953,5(12):139-148.
[9] AVRAAM D G,PAYATAKES A C.Flow regimes and relative permeabilities during steady-state two-phase flow in porous media[J].Journal of Fluid Mechanics,1995,293:207-236.
[10] AND DGA,PAYATAKES A C.Flow mechanisms,relative permeabilities,and coupling effects in steady-state two-phase flow through porous media: the case of strong wettability[J].Industrial & Engineering Chemistry Research,2016,38(38):778-786.
[11] AVRAAM DG,PAYATAKES A C.Generalized relative permeability coefficients during steady-state two-phase flow in porous media,and correlation with the flow mechanisms[J].Transport in Porous Media,1995,22(1):150.
[12] AVRAAM DG,KOLONIS G B,ROUMELIOTIS T C,et al.Steady-state two-phase flow through planar and nonplanar model porous media[J].Transport in Porous Media,1994,16(1):75-101.
[13] TSAKIROGLOU C D,AVRAAM D G,PAYATAKES A C.Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks[J].Advances in Water Resources,2007,30(9):1981-92.
[14] GUTIÉRREZ B,JUAREZ F,ORNELAS L,et al.Experimental study of gas–liquid two-phase flow in glass micromodels[J].International Journal of Thermophysics,2008,29(6):2126-35.
[15] TALLAKSTAD K T,KNUDSEN H A,RAMSTAD T,et al.Steady-state two-phase flow in porous media:statistics and transport properties[J].Physical Review Letters,2009,102(7):4502.
[16] ERPELDING M,SINHA S,TALLAKSTAD K T,et al.History independence of steady state in simultaneous two-phase flow through two-dimensional porous media[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2013,88(5):660-691.
[17] KRAUSE M H.Modeling and investigation of the influence of capillary heterogeneity on relative permeability[M].2012.
[18] KRAUSE M,KREVOR S,BENSON S M.A procedure for the accurate determination of sub-core scale permeability distributions with error quantification[J].Transport in Porous Media,2013,98(3):565-88.
[19] ROMANENKO K,BALCOM B J.An assessment of non-wetting phase relative permeability in water-wet sandstones based on quantitative MRI of capillary end effects[J].Journal of Petroleum Science & Engineering,2013,110(5):225-231.
[20] 孔祥宇.升平油田葡萄花油层高含水期提液机理研究[D].大庆:大庆石油学院,2009.
[21] 雷克林,王新海,陈建华.八面河油田莱5-4块中高含水期不同井型提液分析研究[J].石油天然气学报,2011,33(7):141-144.
[22] 李敏,喻高明,郑可.LH11-1油田动态法计算单井提液时机实例研究[J].石油地质与工程,2010,24(3):65-67.

相似文献/References:

[1]田家林 何虹志 杨 琳 杨应林 宫学成 胡志超 李居瑞.新型射流振荡减摩阻工具设计及内部流场特性数值模拟分析与实验验证[J].中国海上油气,2020,32(01):125.[doi:10.11935/j.issn.1673-1506.2020.01.015]
 TIAN Jialin HE Hongzhi YANG Lin YANG Yinglin GONG Xuecheng HU Zhichao LI Jurui.Design of a new jet oscillation friction reducing tool and the numerical simulation analysis and experimental testing on its internal flow field characteristics[J].China Offshore Oil and Gas,2020,32(01):125.[doi:10.11935/j.issn.1673-1506.2020.01.015]

备注/Memo

备注/Memo:
*“十三五”国家科技重大专项“低渗-致密油藏描述新方法与开发模式(编号:2017ZX05009-001)”、国家基本科研业务费优秀教师项目“致密油相态及相对渗透率曲线特征研究(编号:2-9-2018-217)”部分研究成果。 第一作者简介: 付强,男,高级工程师,主要研究多相流体渗流规律和非常规开发技术。地址:北京市朝阳区太阳宫南街6号院(邮编:100028)。E-mail:fuqiang8@cnooc.com.cn。收稿日期:2019-08-27 改回日期:2019-09-23
更新日期/Last Update: 2020-01-15