|本期目录/Table of Contents|

[1]蒋维宇 李 伟 张宗华 袁新安 葛玖浩 赵建明 马维平.水下ACFM高灵敏度裂纹检测探头设计[J].中国海上油气,2019,31(06):160-166.[doi:10.11935/j.issn.1673-1506.2019.06.022]
 JIANG Weiyu LI Wei ZHANG Zonghua YUAN Xin'an GE Jiuhao ZHAO Jianming MA Weiping.Design of underwater ACFM high sensitivity crack detection probe[J].China Offshore Oil and Gas,2019,31(06):160-166.[doi:10.11935/j.issn.1673-1506.2019.06.022]
点击复制

水下ACFM高灵敏度裂纹检测探头设计()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第31卷
期数:
2019年06期
页码:
160-166
栏目:
海洋工程
出版日期:
2019-11-21

文章信息/Info

Title:
Design of underwater ACFM high sensitivity crack detection probe
文章编号:
1673-1506(2019)06-0160-07
作者:
蒋维宇1 李 伟1 张宗华2 袁新安1 葛玖浩1 赵建明1 马维平1
(1. 中国石油大学(华东)海洋油气装备与安全技术研究中心 山东青岛 266580; 2. 山东省特种设备检验研究院枣庄分院 山东枣庄 277100)
Author(s):
JIANG Weiyu1 LI Wei1 ZHANG Zonghua2 YUAN Xin'an1 GE Jiuhao1 ZHAO Jianming1 MA Weiping1
(1. China University of Petroleum Center for Offshore Engineering and Safety Technology, Qingdao, Shandong 266580, China; 2. Zaozhuang Branch of Shandong Special Equipment Inspection and Research Institute, Zaozhuang, Shandong 277100, China)
关键词:
ACFM 微小裂纹 畸变特征信号 高灵敏度探头 隧道磁阻 信号识别方法 裂纹检测实验
Keywords:
Alternating Current Field Measurement microcrack distortion characteristic signal high sensitivity probe tunnel magnetoresistance signal identification method crack detection experiment
分类号:
TE58
DOI:
10.11935/j.issn.1673-1506.2019.06.022
文献标志码:
A
摘要:
水下结构物局部微小裂纹在腐蚀和外力作用下可快速扩展,为结构物安全服役带来巨大隐患,因此及时发现海洋工程结构物微小裂纹具有重要意义。本文引入交流电磁场检测(ACFM)技术,建立了水下ACFM探头仿真模型,设计了基于隧道磁阻(TMR)磁场传感器的水下ACFM高灵敏度裂纹检测探头,通过提取裂纹畸变特征信号,提出了不锈钢表面微小裂纹信号识别方法,并通过水下微小裂纹检测实验来检验该探头的检测精度,结果表明所设计的裂纹检测探头可借助裂纹磁场特征信号实现不锈钢薄板表面深度1 mm、长度1.5 mm微小短裂纹和表面长度5 mm、深度0.5 mm微小浅裂纹的高灵敏度准确识别。本文研究成果可为水下结构缺陷早期裂纹预警及结构物长期安全服役提供技术支持,具有较好的推广应用价值。
Abstract:
The local micro-cracks on underwater structures can rapidly expand under the action of corrosion and external force, which brings huge hidden dangers to the safe service of structures. Therefore, it is of great significance to discover the micro-cracks on ocean engineering structures in a timely manner. In this paper, by introducing the Alternating Current Field Measurement(ACFM)technology, the underwater ACFM probe simulation model was established, and a Tunnel Magnetoresistance(TMR)magnetic field sensor-based underwater ACFM high-sensitivity cracks detection probe was designed. By extracting the crack distortion characteristic signal, an identification method for detecting the micro-cracks on the surface of stainless steel was proposed, and the detection accuracy of this probe was validated by virtue of underwater micro-crack detection experiment. The experimental results show that the designed crack detection probe can, based on the characteristic signal of crack magnetic field, accurately identify short micro-cracks with a depth of 1mm and a length of 1.5 mm, as well as the shallow micro-cracks with a surface length of 5 mm and a depth of 0.5 mm on the surface of stainless steel sheet with high sensitivity. The research results in this paper can provide technical supports for the early crack warning of underwater structural defects and the long-term safe service of structures, showing a good application value.

参考文献/References:

[1] LASSEN T.Risk based fatigue inspection planning-state of the art[J].Procedia Engineering,2013,66:489-499. [2] TU Y,CHENG Z S,MUSKULUS M.A global slamming force model for offshore wind jacket structures[J].Marine Structures,2018,60:201-217. [3] DOYLE J.Assault on America:A decade of petroleum company disaster,pollution,and profit[R].2010 National Wildlife Federation,2010. [4] FANG Huacan.DUAN Menglan.Chapter 4 - Special problems of deep-sea oil and gas engineering,in offshore operation facilities[M].Boston:Gulf Professional Publishing,2014:537-686. [5] 李伟.基于交流电磁场的缺陷智能可视化检测技术研究[D].东营:中国石油大学(华东),2007. LI Wei.Research on ACFM based defect intelligent recognition and visualization technique [D].Dongying:China University of Petroleum,2007. [6] MORALES R,PEREIRA D.Prototype of stereoscopic vision system to improve the image quality in turbid waters during underwater inspections[C].IEEE Oceans,Boston,2006:1-4. [7] 王姮,卜燕,张华,等.基于分形维数的磁痕图像缺陷检测[J].计算机应用研究,2015,32(2):603-605,612. WANG Heng,BU Yan,ZHANG Hua,et al.Detection of magnetic flaw image defects based on fractal dimension[J].Journal of Computer Applications,2015,32(2):603-605,612. [8] WANG Xin,TAN C S,WONG B S.Defects detection in magnetic particle inspection application using image processing techniques[C].Non-Destructive Testing Conference,2010:14-16. [9] 鲍晓宇.相控阵超声检测系统及其关键技术的研究[D].北京:清华大学,2003. BAO Xiaoyu.Research on phased array ultrasonic detection system and its key technologies[D].Beijing:Tsinghua University,2003. [10] JUNG M,PARK B,BAE J,et al.PAUT-based defect detection method for submarine pressure hulls[J].International Journal of Naval Architecture and Ocean Engineering,2018,10:153-169. [11] 高军哲.多频涡流无损检测的干扰抑制和缺陷检测方法研究[D].长沙:国防科学技术大学,2011. GAO Junzhe.Research on interference suppression and defect detection methods for multi-frequency eddy current non-destructive testing[D].Changsha:National University of Defense Technology,2011. [12] HE Yunze,YANG Ruizhen.Eddy current volume heating thermography and phase analysis for imaging characterization of interface delamination in CFRP[J].IEEE Transactions on Industrial Informatics,2015,11(6):1287-1297. [13] RATNAYAKE R M C,SENEVIRATNE A M N D B.In-service inspection of static mechanical equipment:Use of a fuzzy inference system for maintaining the quality of an inspection program[C].Industrial Engineering and Engineering Management(IEEM),2013 IEEE International Conference on.IEEE,2013. [14] LI Wei,YUAN Xin'an,CHEN Guoming,et al.A feed-through ACFM probe with sensor array for pipe string cracks inspection [J].NDT&E International,2014,67:17-23. [15] AKBARI-KHEZRI A,SADEGHI S H,MOINI R,et al.An efficient modeling technique for analysis of AC field measurement probe output signals to improve crack detection and sizing in cylindrical metallic structures[J].Journal of Nondestructive Evaluation,2016,35(1):9. [16] LI Wei,YUAN Xin'an,CHEN Guoming,et al.Induced circumferential current for transverse crack detection on a pipe string[J].Insight - Non-Destructive Testing and Condition Monitoring,2015,57(9):528-533. [17] MARTIN L,DAVID T,MILTON K.Recent developments and applications of the ACFM inspection method and ACSM stress measurement method[C].9th European Conference on NDT,2006. [18] BLAKELEY B,LUGG M.Application of ACFM for inspection through metal coatings[J].Insight-Non-Destructive Testing and Condition Monitoring,2010,52(6):310-315. [19] PARK S,LUGG M.Development of CIA's remote robotic crack detection service[C].Galveston,TX,USA:API Inspection Summit and Expo,2011. [20] SMITH M,LAENEN C.Inspection of nuclear storage tanks using remotely deployed ACFMT[J].Insight - Non-Destructive Testing and Condition Monitoring,2007,49(1):17-20. [21] 郑强,杨日杰.电磁波在海水中的传播特性研究[J].电声技术,2013,37(2):33-35,39. ZHENG Qiang,YANG Rijie.Propagation properties of electromagnetic wave in sea water[J].Audio Engineering,2013,37(2):33-35,39. [22] 刘涛.水下结构物缺陷的交流电磁场检测技术研究[D].东营:中国石油大学(华东),2014. LIU Tao.Research on AC electromagnetic field detection technology for underwater structural defects[D].Dongying:China University of Petroleum,2014.

相似文献/References:

备注/Memo

备注/Memo:
*国家重点研发计划“海洋油气开采工艺设施安全及完整性检测、监测技术及装备(编号:2017YFC0804500)”、国家自然科学基金面上项目“基于交流电磁场的水下结构缺陷高精度智能定量识别方法与应用研究(编号:51574276)”、山东省重点研发计划项目“基于交流电磁场的水下结构物智能识别与可视化成像技术研究(编号:2018GHY115026)”、中央高校基本科研业务费专项资金资助“基于交流电磁场的海洋结构物缺陷智能可视化识别系统开发与应用研究(编号:18CX05017A)”、博士后创新人才支持计划“基于交
更新日期/Last Update: 1900-01-01