|本期目录/Table of Contents|

[1]刘红兵 陈国明 吕 涛 黄 翱.海洋工程数值风-浪-流水池模拟及分析[J].中国海上油气,2019,31(06):154-159.[doi:10.11935/j.issn.1673-1506.2019.06.02]
 LIU Hongbing CHEN Guoming LYU Tao HUANG Ao.Ocean engineering numerical simulation and analysis in the wind-wave-current pool[J].China Offshore Oil and Gas,2019,31(06):154-159.[doi:10.11935/j.issn.1673-1506.2019.06.02]
点击复制

海洋工程数值风-浪-流水池模拟及分析()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第31卷
期数:
2019年06期
页码:
154-159
栏目:
海洋工程
出版日期:
2019-11-21

文章信息/Info

Title:
Ocean engineering numerical simulation and analysis in the wind-wave-current pool
文章编号:
1673-1506(2019)06-0154-06
作者:
刘红兵12 陈国明1 吕 涛1 黄 翱1
(1. 中国石油大学(华东)海洋油气装备与安全技术研究中心 山东青岛 266580; 2. 哈尔滨工程大学船舶工程学院 黑龙江哈尔滨 150001)
Author(s):
LIU Hongbing12 CHEN Guoming1 LYU Tao1 HUANG Ao1
(1. Centre for Offshore Engineering and Safety Technology, China University of Petroleum, Qingdao, Shandong 266580, China; 2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China)
关键词:
数值风-浪-流水池 浪-流耦合 风-浪-流耦合 模拟分析
Keywords:
numerical wind-wave-current pool wave-current coupling wind-wave-current coupling simulation analysis
分类号:
TE52
DOI:
10.11935/j.issn.1673-1506.2019.06.02
文献标志码:
A
摘要:
针对海洋工程中风-浪-流三者之间复杂的非线性相互作用,系统研究了风-浪-流相互作用机理。基于不可压缩Navier-Stokes方程,通过对FLUENT软件进行二次开发,构建了三维海洋工程数值风-浪-流水池。将数值水池模拟结果和理论值进行了对比,二者吻合较好,表明所建模型具有较高的精度; 借助所建立的数值模型,成功模拟了波浪、波浪-海流以及海风-波浪-海流之间的相互耦合作用。研究结果表明,单独浪-流耦合作用时海流对于波浪运动参数具有较大影响,波流同向时,海流导致波浪传播速度和波长增大,幅值减小; 波流逆向时,波浪传播速度和波长均减小,波幅增大,且海流速度越大,波浪参数增大或减小的幅度越明显。风-浪-流三者耦合作用时,风会导致波浪传播过程中波长增大,波幅减小,同时会导致波峰呈现一定倾角,加速波浪发生破碎。本文研究成果可为处于风-浪-流中的海洋工程结构物力学分析提供借鉴。
Abstract:
The wind-wave-current interaction mechanism was systematically studied for the complex nonlinear interaction between wind, wave and current in ocean engineering. Based on the incompressible Navier-Stokes equation, a three-dimensional ocean engineering numerical wind-wave-current pool was constructed by carrying out secondary development of FLUENT software. By comparison, the results of numerical pool simulation were in good agreement with the theoretical values, indicating that the model has high precision. By virtue of the established numerical model, the mutual coupling effects between wave, wave-current and wind-wave-current were successfully simulated. The results show that for single wave- current coupling effect, current has a great influence on the wave motion parameters. When the wave and current are in the same direction, the current leads to increased wave propagation velocity and wavelength and decreased amplitude. When the wave and current run in opposite directions, both the wave propagation velocity and the wavelength are decreased and the amplitude is increased; the greater the current velocity, the more obvious the increase or decrease of the wave parameters. When the wind-wave-current coupling effect occurs, the wind will lead to increase of wavelength and decrease of amplitude during wave propagation; meanwhile, it will cause the wave peak to exhibit a certain inclination, which accelerates the breakage of wave. The research results in this paper can provide references for the mechanical analysis of ocean engineering structures in wind-wave-current environments.

参考文献/References:

[1] 赵理工,梁书秀.波流耦合作用下台风浪的模拟[J].中国水运,2016,16(6):100-103.ZHAO Ligong,LIANG Shuxiu.Simulation of wind and waves under wind-wave coupled condition[J].China Water Transport,2016,16(6):100-103. [2] 吴梓鑫,朱仁庆,缪志刚,等.波流数值水池模拟研究[J].江苏科技大学学报(自然科学版),2015,29(1):10-15.WU Zixin,ZHU Renqing,MIAO Zhigang,et al.Numerical simulation of wave-current tanks[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2015,29(1):10-15. [3] 刘秀全,刘康,刘红兵,等.深水高压气井开关井作业窗口分析[J].中国海上油气,2016,28(4):88-93.DOI.10.11935/j.issn.1673-1506.2016.04.014.LIU Xiuquan,LIU Kang,LIU Hongbing,et al.Envelope analysis for starting-up and shutting-in operations of high pressure deep water gas wells[J].China Offshore Oil and Gas,2016,28(4):88-93.DOI.10.11935/j.issn.1673-1506.2016.04.014. [4] 季新然,柳淑学,刘红兵,等.基于势流理论和OpenFOAM的耦合模型对多向不规则波浪的模拟[J].水科学进展,2016,27(1):88-99.JI Xinran,LIU Shuxue,LIU Hongbing,et al.Numerical research on multidirectional waves progresses on the coupling model based on the potential theory and OpenFOAM[J].Advances in Water Science,2016,27(1):88-99. [5] FALTINSEN O M.Sea loads on ships and offshore structures[M].Cambridge:Cambridge University Press,1990:328. [6] 刘秀丽,段梦兰,高攀,等.基于OpenFOAM的数值波浪水槽研究[J].复旦学报(自然科学版),2015,54(3):373-378,385.LIU Xiuli,DUAN Menglan,GAO Pan,et al.Development of numerical wave flumes based on OpenFOAM[J].Journal of Fudan University(Natural Science),2015,54(3):373-378,385. [7] 赵艳,朱仁庆,刘珍.三维数值波浪水池的构建和粘性影响研究[J].舰船科学技术,2014,36(5):42-48.ZHAO Yan,ZHU Renqing,LIU Zhen.Simulation of 3D numerical wave tank and viscosity research[J].Ship Science and Technology,2014,36(5):42-48. [8] WANG Daguo,ZOU Zhili.Tham leslie george[J].China Ocean Engineering,2011,25(3):441-456. [9] 苏晓杰,宁德志,滕斌.孤立波与带有窄缝结构作用的数值模拟研究[J].哈尔滨工程大学学报,2016,37(1):86-91.SU Xiaojie,NING Dezhi,TENG Bin.Numerical simulation of the interaction of solitary waves and structures with narrow slits[J].Journal of Harbin Engineering University,2016,37(1):86-91.[10] ALAMIAN R,SHAFAGHAT R,KETABDARI M J.Wave simulation in a numerical wave tank,using BEM[J].Engineering Geology,2014,7(2):377-390.[11] FINNEGAN W,GOGGINS J.Numerical simulation of linear water waves and wave–structure interaction[J].Ocean Engineering,2012,43:23-31.[12] 梁修锋,杨建民,李俊,等.面向海洋工程应用的数值波浪水池[J].中国科学:物理学 力学 天文学,2011,41(2):112-122.LIANG Xiufeng,YANG Jianmin,LI Jun,et al.Numerical wave tank for the application in ocean engineering[J].Scientia Sinica Physica,Mechanica & Astronomica,2011,41(2):112-122.[13] 李俊,陈刚,杨建民,等.海洋工程试验中多单元造波机波浪模拟方法[J].海洋工程,2011,29(3):37-42.LI Jun,CHEN Gang,YANG Jianmin,et al.Simulation method of wave generated by two-sided segmented wavemakers in deep ocean basin[J].The Ocean Engineering,2011,29(3):37-42.[14] 刘莎莎,顾煜炯,惠万馨,等.基于边界造波法的波浪数值模拟[J].可再生能源,2013,31(2):100-103.LIU Shasha,GU Yujiong,XI Wanxin,et al.Wave numerical simulation based on wave-generation method of defining inlet boundary conditions[J].Renewable Energy Resources,2013,31(2):100-103.[15] 张淑华,杨方方,赵传刚.数值波浪水槽造波技术及工程应用研究[J].科学技术与工程,2013,13(27):8046-8052.ZHANG Shuhua,YANG Fangfang,ZHAO Chuangang.Study on wave-making technology and engineering applications of numerical wave flume[J].Science Technology and Engineering,2013,13(27):8046-8052.[16] 李玉成.波浪与水流共同作用下的流速场[J].海洋工程,1983(4):12-23.LI Yucheng.Velocity field for interacting waves and currents[J].The Ocean Engineering,1983(4):12-23.

相似文献/References:

备注/Memo

备注/Memo:
*国家自然科学基金项目“极端海洋环境下海洋固定平台生存能力及动力灾变应急对策研究(编号:51579246)”、黑龙江省自然科学基金项目“老龄海洋平台强冰致灾机理及灾变应急策略研究(编号:QC2018056)”、中央高校基本科研业务费专项资金项目“极端环境下海洋平台动力灾变机理与损伤控制研究(编号:HEUCFJ180102)”部分研究成果。第一作者简介: 刘红兵,男,博士,讲师,主要从事海洋油气装备安全可靠性等方面研究。地址:黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学船舶工程学院(邮编:1500
更新日期/Last Update: 1900-01-01