|本期目录/Table of Contents|

[1]吉华宇 刘 俊 周 佳 王 璞.液舱建模方法对深水半潜式平台总体强度评估的影响[J].中国海上油气,2019,31(04):165-170.[doi:10.11935/j.issn.1673-1506.2019.04.022 ]
 JI Huayu LIU Jun ZHOU Jia WANG Pu.Analysis on the influence of liquid tank modeling method on overall strength assessment of deepwater semi-submersible platform[J].China Offshore Oil and Gas,2019,31(04):165-170.[doi:10.11935/j.issn.1673-1506.2019.04.022 ]
点击复制

液舱建模方法对深水半潜式平台总体强度评估的影响()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第31卷
期数:
2019年04期
页码:
165-170
栏目:
海洋工程
出版日期:
2019-07-25

文章信息/Info

Title:
Analysis on the influence of liquid tank modeling method on overall strength assessment of deepwater semi-submersible platform
文章编号:
1673-1506(2019)04-0165-06
作者:
吉华宇12 刘 俊12 周 佳23 王 璞23
(1. 上海交通大学海洋工程国家重点实验室 上海 200240; 2. 上海交通大学高新船舶与深海开发装备协同创新中心 上海 200240; 3. 中国船舶及海洋工程设计研究院 上海 200011)
Author(s):
JI Huayu12 LIU Jun12 ZHOU Jia23 WANG Pu23
(1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Marine Design &
关键词:
半潜式平台 总体强度 液舱建模 质量点模型 准静态液舱模型 全动态液舱模型 液舱水动力效应
Keywords:
semi-submersible platform overall strength liquid tank modeling mass point model quasi-static liquid tank model full dynamic liquid tank model hydrodynamic effect of liquid tank
分类号:
P751
DOI:
10.11935/j.issn.1673-1506.2019.04.022
文献标志码:
A
摘要:
为研究液舱建模方式对半潜式平台总体强度评估的影响,分别采用质量点模型、液舱模型(准静态法)以及考虑液舱内部水动力效应的液舱模型(全动态法)进行了平台水动力预报及结构响应计算,并比较了不同液舱建模方式下平台的典型波浪载荷、设计波参数以及结构应力分布。3种液舱建模方法中,质量点模型将液舱重量等效为质量点,均匀施加在液舱舱壁上,忽略了水动压力的影响,而液舱模型则比较合理地模拟了液舱内部液体的分布情况。计算结果表明,质量点模型和液舱模型的总体应力分布基本保持一致,液舱局部应力略有差异,总体来讲液舱内部水动力效应的影响较小。如果液舱位于平台的关键连接部位时,最好建立液舱模型进行分析,这样更能反映真实情况。
Abstract:
In order to study the influence of liquid tank modeling method on the overall strength assessment of semi-submersible platform, the mass point model, the liquid tank model(quasi-static method)and the liquid tank model considering the hydrodynamic effect inside the tank(full dynamic method)were used respectively to carry out the hydrodynamic prediction and structural response calculation of the platform, and the typical wave loads, design wave parameters and structural stress distribution of the platform were compared under different liquid tank modeling modes. Among those three liquid tank modeling methods, the mass point model equalizes the tank weight as the equivalent mass point and uniformly applies it onto the tank bulkhead, ignoring the influence of hydrodynamic pressure, while the tank model simulates the distribution of liquid inside the tank more reasonably. The calculation results show that the overall stress distributions of the mass point model and the liquid tank model are basically the same, and the local stress of the tank is slightly different. Generally speaking, the hydrodynamic effect of the liquid inside the tank is insignificant. However, if the liquid tank is located at the critical junction of the platform, it is suggested to establish a liquid tank model for analysis and better reflecting the real situation.

参考文献/References:

[1] 董宝辉,高定全,羊字军,等.半潜式平台整体强度分析[J].中国造船,2012,53(增刊2):211-216. DONG Baohui,GAO Dingquan,YANG Zijun,et al.Global strength analysis of a semi-submersible platform[J].Shipbuilding of China,2012,53(S2):211-216. [2] 白艳彬,刘俊,薛鸿祥,等.深水半潜式钻井平台总体强度分析[J].中国海洋平台,2010,25(2):22-27. BAI Yanbin,LIU Jun,XUE Hongxiang,et al.Global strength analysis of a deepwater semi-submersible platform[J].China Offshore Platform,2010,25(2):22-27. [3] LUDVIGSEN A,PAN Z Y,GOU P,et al.Adapting a linear potential theory solver for the outer hull to account for fluid dynamics in tanks[C]∥ASME.International Conference on Ocean,Offshore and Arctic Engineering,2013. [4] 徐贺,王璞,杨玥.考虑液舱内部水动力的FPSO波浪载荷研究[J].船舶,2015,26(1):15-19. XU He,WANG Pu,YANG Yue.Analysis of wave loads on FPSO considering interior hydrodynamic effect of liquid tanks[J].Ship & Boat,2015,26(1):15-19. [5] DNV.Sesam user's manual[M].Oslo:DNV,2013. [6] 骆阳,朱仁庆,刘永涛.波浪中FPSO液舱晃荡与船体运动耦合时域分析[J].船舶工程,2016,38(7):21-26. LUO Yang,ZHU Renqing,LIU Yongtao.Time-domain analysis of coupled effects of tank sloshing and ship-hull motion of FPSO in wave[J].Ship Engineering,2016,38(7):21-26. [7] 罗慧明,刘生法,陶荣斌,等.液舱晃荡与FPSO船体运动的耦合分析[J].广东造船,2016,35(1):24-27. LUO Huiming,LIU Shengfa,TAO Rongbin,et al.Coupling of tank sloshing and ship motion for FPSO[J].Guangdong Shipbuilding,2016,35(1):24-27. [8] DNV.Column-stabilized units[S].Oslo:DNV,2012. [9] ABS.Rules for building and classing mobile offshore drilling units[S].Washington:ABS,2016. [10] 王世圣,谢彬,曾恒一,等.3000米深水半潜式钻井平台运动性能研究[J].中国海上油气,2007,19(4):277-280,284. WANG Shisheng,XIE Bin,ZENG Hengyi,et al.Study on motion performance of 3000 meters deep-water semi-submersible drilling platform[J].China Offshore Oil and Gas,2007,19(4):277-280,284.

相似文献/References:

备注/Memo

备注/Memo:
*工业与信息化部“第七代超深水钻井平台创新专项(工信部联装[2016]24号)”部分研究成果。 第一作者简介: 吉华宇,男,在读硕士研究生,主要从事船舶与海洋工程结构物强度研究。地址:上海市闵行区东川路800号船舶海洋与建筑工程学院B408室(邮编:200240)。E-mail:18817819028@163.com。通信作者简介:刘俊,女,副教授,主要从事船舶与海洋工程结构物强度研究。地址:上海市闵行区东川路800号船舶海洋与建筑工程学院B408室(邮编:200240)。E-mail:jliu@sjtu.edu.cn。
更新日期/Last Update: 1900-01-01