|本期目录/Table of Contents|

[1]李朝玮,王嘉松,周建良,等.考虑附属管的钻井隔水管绕流场流动特征分析*[J].中国海上油气,2019,31(03):133-139.[doi:10.11935/j.issn.1673-1506.2019.03.016]
 LI Chaowei,WANG Jiasong,ZHOU Jianliang,et al.Analysis on the flow field characteristics around a drilling riser considering auxiliary lines[J].China Offshore Oil and Gas,2019,31(03):133-139.[doi:10.11935/j.issn.1673-1506.2019.03.016]
点击复制

考虑附属管的钻井隔水管绕流场流动特征分析*()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第31卷
期数:
2019年03期
页码:
133-139
栏目:
钻采工程
出版日期:
2019-06-25

文章信息/Info

Title:
Analysis on the flow field characteristics around a drilling riser considering auxiliary lines
文章编号:
1673-1506(2019)03-0133-07
作者:
李朝玮1 王嘉松2 周建良3 许亮斌1 吴文波2
1. 中海油研究总院有限责任公司 北京 100028; 2. 上海交通大学 上海 200240; 3. 中国海洋石油集团有限公司 北京 100010
Author(s):
LI Chaowei1 WANG Jiasong2 ZHOU Jianliang3 XU Liangbin1 WU Wenbo2
1. CNOOC Research Institute Co., Ltd., Beijing 100028, China; 2. Shanghai Jiao Tong University, Shanghai 200240, China; 3. CNOOC, Beijing 100010, China
关键词:
钻井隔水管 附属管 平均阻力系数 均方根升力系数 绕流场模拟 流动特征
Keywords:
drilling riser auxiliary lines mean drag coefficient RMS lift coefficient flow field simulation flow characteristics
分类号:
O352
DOI:
10.11935/j.issn.1673-1506.2019.03.016
文献标志码:
A
摘要:
钻井隔水管在海流、波浪等水动力作用下可发生侧向偏移、弯曲变形、波激和涡激振动,给钻井隔水管系统带来风险。采用k-ω湍流模型,对带附属管的实际尺寸钻井隔水管绕流场进行了CFD数值模拟分析,研究了来流攻角对隔水管主管流体力和尾流场流动特征的影响。结果表明,附属管对隔水管主管流动控制效果显著,考虑6根附属管的影响后隔水管裸单根所受水动力显著减小; 除来流攻角为270°外,附属管都能减小主管上的平均阻力系数; 所有来流攻角下主管的均方根升力系数幅值均有显著降低。分析认为,隔水管流体力减小的原因是主管与附属管外的剪切层相互影响,抑制了主管上的漩涡泄放; 但不同来流攻角下管外涡街特性和漩涡泄放规律不同,流体力减小的机理也有差异。本文研究结果可为隔水管的附属管优化设计和布置提供参考。
Abstract:
A drilling riser may be subjected to lateral deviation, bending deformation, and wave/vortex-induced vibrations under hydrodynamic forces such as currents and waves, which bring risks to the drilling riser system. By adopting the k-ω turbulence model, CFD numerical simulation was conducted to analyze the ambient flow field of a real scale drilling riser with auxiliary lines, and to study the influence of incoming flow attack angles on the hydrodynamic forces of the main riser pipe and wake flow characteristics of the riser cross-section. The results show that the auxiliary lines have a significant effect on flow control of the main pipe, and hydrodynamic forces on the slick drilling riser joint remarkably decrease when considering six auxiliary lines than without any auxiliaries. The auxiliary lines can effectively reduce the mean drag coefficient on the main pipe in most incoming flow attack angles except 270°, and reduce the amplitude of the root-mean-square(RMS)lift coefficient in all incoming flow directions. According to the analysis, the reason for the decrease of the riser hydrodynamic forces is that the shear layers around the main pipe and the auxiliary lines interact with each other, which suppresses the vortex shedding on the main pipe. Moreover, the characteristics of vortex streets and vortex shedding are different with different incoming flow directions, which result in the mechanism differences of hydrodynamic forces decreasing. Results in this paper could provide reference for design and layout optimization of auxiliary lines around the main pipe of drilling risers.

参考文献/References:

[1] American Petroleum Institute. API RP 16Q Design,selection,operation,and maintenance of marine drilling riser systems[S].2nd Edition.Washington D.C.:API,2017.
[2] 吴学敏,黄维平,滕文刚.深水顶张式立管参数振动与涡激振动耦合振动分析方法研究[J].中国海上油气,2014,26(4):100-105.
WU Xuemin,HUANG Weiping,TENG Wengang.Study on analysis method for coupled vibration of parameter excited vibration and vortex-induced vibration on deep water top-tensed riser[J].China Offshore Oil and Gas,2014,26(4):100-105.
[3] 谷斐,王嘉松,赵卓茂,等.隔水管附属管控制流动的风洞和水洞实验研究[J].水动力学研究与进展A辑,2012,27(3):293-301.
GU Fei,WANG Jiasong,ZHAO Zhuomao,et al.Wind and water tunnel experiments on flow control for a circular cylinder with axial-rod shrouds attached[J].Chinese Journal of Hydrodynamics,2012,27(3):293-301.
[4] 赵卓茂,王嘉松,谷斐.附属管对钻井隔水管涡激振动流动控制的研究[J].水动力学研究与进展A辑,2012,27(4):401-408.
ZHAO Zhuomao,WANG Jiasong,GU Fei.The flow control of vortex-induced vibration for drilling riser by affiliated pipelines[J].Chinese Journal of Hydrodynamics,2012,27(4):401-408.
[5] MAHDI A,JO(~overA)O P P,RODRIGO M.Numerical investigation of the flow behavior around a single cylinder using Large Eddy Simulation model[J].Ocean Engineering,2017,145:464-478.
[6] KIM S,ALAM M M,MAITI D K.Wake and suppression of flow-induced vibration of a circular cylinder[J].Ocean Engineering,2018,151:298-307.
[7] HONG K S,SHAH U H.Vortex-induced vibrations and control of marine risers:A review[J].Ocean Engineering,2018,152:300-315.
[8] ZDRAVKOVICH M M.Review of flow interference between two circular cylinders in various arrangements[J].Journal of Fluids Engineering,1977,99(4):618-633.
[9] SUMNER D.Two circular cylinders in cross flow:a review[J].Journal of Fluids and Structures,2010,26(6):849-899.
[10] ZHOU Y,MAHBUB ALAM M.Wake of two interacting circular cylinders:A review[J].International Journal of Heat and Fluid Flow,2016,62:510-537.
[11] WU Y L.Numerical simulation of flows past multiple cylinders using the hybrid local domain free discretization and immersed boundary method[J].Ocean Engineering,2017,141:477-492.
[12] BÁRBARA L.DA SILVA,LUCIANO R D,UTZIG J,et al.Flow patterns and turbulence effects in large cylinder arrays[J].International Journal of Heat and Fluid Flow,2018,69:136-149.
[13] 张兆顺,崔桂香,许春晓,等.湍流理论与模拟[M].2版.北京:清华大学出版社,2017:241-268.
[14] BRAZA M,CHASSAING P,MINH H H.Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J].Journal of Fluid Mechanics,1986,165:79-130.
[15] MITTAL S,KUMAR V,RAGHUVANSHI A.Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J].International Journal for Numerical Methods in Fluids,1997,25:1315-1344.
[16] LABBÉ D L,WILSON P A.A numerical investigation of the effects of the span wise length on the 3-D wake of a circular cylinder[J].Journal of Fluids and Structures,2007,23(8):1168-1188.
[17] WANG J S,LIU H,GU F,et al.Numerical simulation of flow control on marine riser with attached splitter plate[R].Shanghai:The Proceeding of the 29th International Conference on Ocean,2010.
[18] NORBERG C.Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder[D].Goteborg,Sweden:Chalmers University,1987.
[19] DONG S,KARNIADAKIS G E.DNS of flow past a stationary and oscillating cylinder at Re=10000[J].Journal of Fluids and Structures,2005,20(4):519-531.

相似文献/References:

备注/Memo

备注/Memo:
*国家自然科学基金重点项目“海洋深水浅层钻井关键技术基础理论研究(编号:51434009)”“十三五”国家科技重大专项“深水钻完井工程技术(编号:2016ZX05028-001)”部分研究成果。
第一作者简介: 李朝玮,男,2016年毕业于中国石油大学(北京)油气井工程专业,获博士学位,从事海洋钻完井工程和深水钻井隔水管、水下井口相关的科研设计工作。地址:北京市朝阳区太阳宫南街6号院海油大厦B座(邮编:100028)。E-mail:chw25@163.com。
更新日期/Last Update: 2019-05-20