|本期目录/Table of Contents|

[1]侯志强,尹文笋,胡 伟,等.基于FCT校正的OBN资料弹性波逆时偏移*[J].中国海上油气,2019,31(03):75-83.[doi:10.11935/j.issn.1673-1506.2019.03.009]
 HOU Zhiqiang,YIN Wensun,HU Wei,et al.Elastic reverse-time migration method of OBN data based on flux correction transmission algorithm[J].China Offshore Oil and Gas,2019,31(03):75-83.[doi:10.11935/j.issn.1673-1506.2019.03.009]
点击复制

基于FCT校正的OBN资料弹性波逆时偏移*()

《中国海上油气》[ISSN:1673-1506/CN:11-5339/TE]

卷:
第31卷
期数:
2019年03期
页码:
75-83
栏目:
东海盆地油气勘探开发成果专辑
出版日期:
2019-06-25

文章信息/Info

Title:
Elastic reverse-time migration method of OBN data based on flux correction transmission algorithm
文章编号:
1673-1506(2019)03-0075-09
作者:
侯志强尹文笋胡 伟王晓培张 岩刘庆文
中海石油(中国)有限公司上海分公司 上海 200335
Author(s):
HOU ZhiqiangYIN WensunHU WeiWANG XiaopeiZHANG YanLIU Qingwen
CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
关键词:
FCT校正 OBN资料 弹性波逆时偏移 波场延拓 数值频散 通量校正传输
Keywords:
FCT algorithm OBN data elastic reverse-time migration(ERTM) wave field continuation numerical dispersion flux correction transmission
分类号:
TE132.1+4
DOI:
10.11935/j.issn.1673-1506.2019.03.009
文献标志码:
A
摘要:
OBN多分量地震勘探资料具有频带宽和矢量保真性高等特点,现有的弹性波逆时偏移技术难以解决OBN宽频多分量数据的纵横波偏移成像问题。以实现OBN宽频地震勘探资料的纵横波高精度成像为目标,研究一阶速度-胀缩-旋转弹性波方程逆时偏移中的数值频散压制方法,实现了基于FCT校正的OBN资料弹性波逆时偏移。在炮、检波场延拓过程中,依据相邻两个时刻的波场以及漫射因子和反漫射因子构建漫射通量和反漫射通量,并对每一时刻含数值频散的波场进行校正,实现了对由差分离散造成的数值频散的压制,消除了纵横波成像误差。模型测试与实测资料处理试验表明,本文方法能够消除由数值频散造成的偏移剖面同相轴错断或虚假同相轴等现象,可以获取高精度的深度域纵横波成像结果。
Abstract:
Ocean Bottom Nodes(OBN)multi-component seismic data have the characteristics of high frequency bandwidth and vector fidelity. The existing elastic reverse-time migration(ERTM)technique cannot be directly used to solve the problem of P-P and P-S wave imaging problem because of the wide frequency band in OBN data. Aiming at high precision imaging of P-P and P-S waves for OBN broadband seismic data, this paper studies the numerical dispersion suppression method in ERTM of the first order velocity-expansion-rotation elastic wave equation, and realizes the ERTM of OBN data based on flux correction transmission(FCT)algorithm. In the process of wave field continuation of source and receiver fields, diffuse and anti-diffusion fluxes are constructed by using diffusion factor, anti-diffusion factor and the elastic wave field of two adjacent moments, and so the numerical dispersion is corrected at each time step. The numerical dispersion caused by difference discrete is suppressed and the imaging errors of P and S waves are eliminated. Model test and actual data processing test show that this method can eliminate phenomena like the migration profile phase axis breaking and false phase axis caused by numerical dispersion, and obtain high precision depth-domain P-P and P-S wave imaging results.

参考文献/References:

[1] BOVET L,CERAGIOLI E,TCHIKANHA S,et al.Ocean bottom nodes processing:reconciliation of streamer and OBN data sets for time lapse seismic monitoring:The Angolan deep offshore experience[C].2010 SEG Annual Meeting.Society of Exploration Geophysicists,2010:3751-3755.
[2] QUADT L,DETOMO L,PIRMEZ C,et al.Ocean bottom node seismic at the deepwater Bonga field,Nigeriap[C].International Petroleum Technology Conference,2013:1-4.
[3] CLARKE R,XIA G,KABIR N,et al.Case study:A large 3D wide-azimuth ocean-bottom survey in the deepwater gulf of Mexico[C].2006 SEG Annual Meeting.Society of Exploration Geophysicists,2006:1-4.
[4] MANDY W,BIONDO B,SHUKI R.Robust least squares RTM on the 3D deimos ocean bottom node dataset[C].2014 SEG Annual Meeting.Society of Exploration Geophysicists,2014:3086-3091.
[5] MAXWELL P W,OWEN T R E,DENNY S,et al.Autonomous ocean bottom seismic node recording device:U.S.Patent 7,646,670[P].2010-1-12.
[6] THERIOT C,MCDONALD M,KAMARUDIN M R,et al.Survey design for optimized ocean bottom node acquisition[C].SEG Technical Program Expanded Abstracts 2014.Society of Exploration Geophysicists,2014:213-217.
[7] VAN GESTEL J P,L'HEUREUX E,SANDSCHAPER J R,et al.Atlantis "Beyond 4D" ocean bottom nodes acquisition design[C].2015 SEG Annual Meeting.Society of Exploration Geophysicists,2015:125-129.
[8] VAN GESTEL J P,ROBERTS M,DAVIS S G,et al.Atlantis ocean bottom nodes time-lapse observations[C].2013 SEG Annual Meeting.Society of Exploration Geophysicists,2013:4954-4959.
[9] PACAL E E,STEWART R R,BAYSAL E,et al.Seismic imaging with ocean-bottom nodes(OBN):Mirror migration technique[C].2015 SEG Annual Meeting.Society of Exploration Geophysicists,2015:4039-4043.
[10] RONEN S,KANDILAROV A,Massacand C,et al.Onboard data quality control and processing for ocean-bottom nodes[J].The Leading Edge,2012,31(10):1168-1176.
[11] SUKUP D V,CRAWFORD P F.P-wave ocean-bottom node processing in gulf of Mexico:A test survey[C].14th International Congress of the Brazilian Geophysical Society & Expogef.Brazilian Geophysical Society,2015:1216-1221.
[12] ALERINI M,TRAUB B,RAVAUT C,et al.Prestack depth imaging of ocean-bottom node data[J].Geophysics,2009,74(6):57-63.
[13] THOMPSON M,AMUNDSEN L,WESTERDAHL H.Ocean bottom node seismic-present challenges and future solutions[C].2010 SEG Annual Meeting.Society of Exploration Geophysicists,2010:3759-3763.
[14] TRAUB B,ALERINI M,RAVAUT C.Improved prestack depth imaging by ocean bottom node data[C].2008 SEG Annual Meeting.Society of Exploration Geophysicists,2008:3546-3549.
[15] 杨佳佳.多分量地震逆时偏移的关键技术研究[D].青岛:中国海洋大学,2015.
YANG Jiajia.Research of multi-components seismic wave reverse-time depth migration[D].Qingdao:Ocean University of China,2015.
[16] ANDERSON J E,BAUMSTEIN A,MARCINKOVICH C,et al.Method for temporal dispersion correction for seismic simulation,RTM and FWI:U.S.Patent 20,150,355,356[P].2015-12-10.
[17] TANG H G,HE B S,MOU H B.P- and S-wave energy flux density vectors[J].Geophysics,2016,81(6):357-368.
[18] 董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J].地球物理学报,2000,43(6):411-419.
DONG Liangguo,MA Zaitian,CAO Jingzhong.Study on the stability of high order difference solutions for first order elastic wave equations with staggered grids[J].Chinese Journal of Geophysics,2000,43(6):411-419.
[19] BERENGER J P.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1994,114(2):185-200.
[20] CLAPP R G.Reverse time migration with random boundaries[C].79th Annual International Meeting.SEG Expanded Abstracts,2009.
[21] 李凯瑞,何兵寿,胡楠.基于一阶速度-胀缩-旋转方程的多分量联合逆时偏移[J].煤炭学报,2018,43(4):1072-1082.
LI Kairui,HE Bingshou,HU Nan.Multicomponent joint reverse time migration based on first order velocity dilatation rotation equations[J].Journal of China Coal Society,2018,43(4):1072-1082.
[22] DU Qizhen,GONG Xufei,ZHANG Mingqiang,et al.3D PS-wave imaging with elastic reverse-time migration[J].Geophysics,2014,79(5):173-184.
[23] BORIS J P,BOOK D L.Flux-corrected transport.I.SHASTA,a fluid transport algorithm that works[J].Journal of Computational Physics,1973,11(1):38-69.
[24] 张省,何兵寿,王玉凤.VTI介质交错网格FCT有限差分数值模拟[J].工程地球物理学报,2012,9(5):565-571.
ZHANG Sheng,HE Bingshou,WANG Yufeng.Staggered grid FCT finite difference numerical simulation in VTI media[J].Chinese Journal of Engineering Geophysics,2012,9(5):565-571.
[25] 李立平,何兵寿.TTI介质弹性波FCT有限差分数值模拟[J].地球物理学进展.2017,32(4):1584-1590.
LI Liping,HE Bingshou.Elastic wave FCT finite difference numerical simulation in TTI media[J].Progress in Geophysics,2017,32(4):1584-1590.
[26] FEI T,LARNER K.Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport[J].Geophysics,1995,60(6):1830-1842.
[27] 杨顶辉,滕吉文.各向异性介质中三分量地震记录的FCT有限差分模拟[J].石油地球物理勘探,1997,32(2):181-190.
YANG Dinghui,TENG Jiwen.Finite difference FCT simulation of three-component seismic records in anisotropic media[J].Oil Geophysical Prospecting,1997,32(2):181-190.

相似文献/References:

备注/Memo

备注/Memo:
* “十三五”国家科技重大专项“东海深层低渗-致密天然气勘探开发技术(编号:2016ZX05027)”部分研究成果。
第一作者简介: 侯志强,男,高级工程师,1983年毕业于山东海洋大学海洋地球物理专业,长期从事地球物理勘探研究工作。地址:上海市长宁区通协路388号(邮编:200335)。E-mail:houzhq@cnooc.com.cn。
更新日期/Last Update: 2019-05-20